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Abstract: Deformable object manipulation (DOM) remains challenging in robotics since the physical characteristics of de-
formable linear objects (DLO) are generally strongly nonlinear and unknown. This paper presents an active deformation frame-
work for robot manipulating the elastic rod. The optimization-based curve fitting method is designed to extract a low-dimensional
feature vector representing the three-dimensional centerline of the elastic rod. Deformation Jacobian Matrix (DJM) connecting
feature changes and robot motion changes is estimated online by Adaptive Kalman Filter (AKF). The model-free velocity con-
troller is designed based on the optimization criterion to accelerate the deformation speed of the elastic rod. The stability of the
proposed manipulation framework and the boundedness of all signals in the closed-loop system are proved by Lyapunov theory.
Detailed simulations are given to evaluate the performance of the proposed approach.
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1 Introduction

Deformable object manipulation (DOM) has excellent ap-
plication values in the field of robotics, such as assembling
devices [1], manipulating cables [2], and folding clothes [3].
Improving the flexibility and accuracy of manipulating de-
formable linear objects (DLO) can help increase the automa-
tion of robots in real-world environments. Although there
has been a lot of research in DOM, the following problems
still exist: (i) Effective perception of shapes in a compact
manner; (ii) Approximation of the shape-motion sensorimo-
tor model; (iii) Design of deformation controller enabling the
robot to conduct DOM. This work aims to present a unified
solution to the above issues.

It is necessary to design a low-dimensional feature for ad-
equate shape perception within an efficient manner in shape
servoing (i.e., the automatic manipulation of DLO using
robot) [4, 5]. Four simple features (point, distance, angle,
and curvature) were used in [6] to quantify DLO; however,
they can only represent local information without consider-
ing the whole shape. A constant curvature model was uti-
lized to conduct the shape recognition of soft objects [7].
Truncated Fourier series was used in [8] to generate variable-
dimensional features to represent the shapes, which is the
first application of curve fitting (i.e., weight summation of
a series of fixed functions named after basis functions [9])
in DOM. With the research of intelligent optimization algo-
rithms, such methods have been increasingly used in curve
fitting. Particle Swarm Optimization (PSO) was used to op-
timize the parameters of B-spline curves [10]. Simulated
Annealing Algorithm (SAA) was utilized to solve optimal
node parameters of NURBS for curve fitting [11]. Ant
Colony Optimization (ACO) was used to optimize the cen-
ter of RBF neural work to fit the given function [12]. Ge-
netic Algorithm (GA) was adopted to optimize the param-
eters of Bezier-based mathematical model constructed by
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least square method [13]. Although optimization-based tech-
niques have significantly improved curve fitting, they have
not yet been applied in DOM.

Deformation Jacobian Matrix (DJM) is defined as a ve-
locity mapping indicator between feature changes and mo-
tion changes of the robot [14]. As the strong nonlinearity of
DLO, it is difficult to solve the DJM by analytical methods.
Instead, most work of numerical methods have been applied.
For example, Broyden update rules was used to approximate
the deformation behavior between a continuum manipulator
and an anisotropic deformable phantom [15]. Least Square
Method (LSM) was used to estimate DJM, however its accu-
racy depends on the regression matrix [16]. Weighted LSM
with a sliding-window was utilized to estimate DJM, which
is robust to observation noise [17]. Kalman filter (KF) can
use the previous state and current measurement value to ob-
tain the optimal current state estimation, which is a simple
calculation structure. Linear KF was used to estimation the
image Jacobian matrix in visual servoing with good identi-
fication performance [18]. Although the KF-based methods
have good potential in estimating DJM, they are rarely used.

Since the model properties of DLO are usually unknown,
many model-based control methods are difficult to apply
without model approximation. Model-free methods are well
known to implement simply without prior physical structure
of DLO, e.g., negative-feedback controller [19], and rolling-
time domain predictive controller [20]. Based on ensuring
the simplicity of the controller structure, it is also neces-
sary to accelerate the deformation speed of the DLO object,
which is a key consideration. Model-free shaping controllers
are a hot research direction in DOM.

In this paper, we present an active deformation frame-
work of the rigid robot manipulating the elastic rod and si-
multaneously approximating the sensorimotor model. An
optimization-based feature extraction technique is con-
structed with radial regression parameterization to represent
the three-dimensional centerline. Adaptive Kalman Filter
(AKF) is used to approximate the quasi-deformation prop-
erties between features of DLO and robot motion. Detailed
simulations are presented to validate the proposed method.
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Fig. 1: Conceptual representation of the manipulation of the
elastic rod. A fixed camera measures the three-dimensional
centerline of the elastic rod. The task is defined as moving
the robot to deform the elastic rod such its feedback ¢ ap-
proaches the desired shape configuration ¢* automatically.

2 Preliminaries

Notation. Bold small letters m and bold capital letters M
represent column vectors and matrices. The subscript k de-
notes the discrete instant of the variable x;. I, is an identity
matrix with the dimension of n x n. Kronecker product is
defined by ®.

Some assumptions are given to derive our framework:

o A fixed depth camera in an eye-to-hand configuration

measures the three-dimensional centerline of the rod
(depicted in Fig. 1), which is defined by:

e=[cl,...,ch]" er?N )

where N is the number of points comprising the center-
line, ¢; = [Cai, Cyis cm-]T € R3 is the Cartesian coordi-
nates of the ith (i = 1,--- | N) center-point.
o The robot has kinematic control interface [21], and can
accurately execute the given velocity command Ary, €
RY that satisfies the incremental position signal r; =
rp_1 + Ary.
e The rod is deformed gently such that the poten-
tial/elastic energy exclusively determines its shape.
Problem Statement. Given a three-dimensional target
centerline ¢*, design a vision-based velocity command Ary,
to enable the robot to deform the elastic rod into the target
configuration, without the physical properties of the elastic
rod and the calibration of the camera.

3 Methods
3.1 Feedback Shape Parameters

As the large dimension 3N of the raw coordinates c, it
is not suitable for real-time control. Therefore, it is nec-
essary to design a feature extraction technique to represent
the shape of the elastic rod with a reduced-dimensional fea-
ture vector s € RP. In this section, we fit the center-
line € to a continuous parametric curve f(p) € R?® where
p is the normalized arc-length between the start point c;
and the point ¢; along the rod. Then, ¢; = f(p;) where
0<p; <1,p1 =0,pny = 1. The parametric curve is given
as follows:

£(p) = _piGj(p), Gi(p)=exp(—jlol*) (@
=0

where n € N* is the fitting order, and p; € R? repre-
sents shape parameters. G,(p) is the radial basis regres-
sion parameterization with j € [0, n] determining its width.
To determine the parameters p;, a fitness function based
on Akaikes Information Criterion (AIC) (originally used to
evaluate the accuracy of the model for a set of data) by refer-
ring to (2) is proposed as follows:

AIC=In((Gs—¢)" (Gs—c)+1)+3n (3

where G and s are defined as follows:

G =I[G],...,G}|" e R¥3(HD
Gi = [Go(pi),- .., Gnlp)] ® I3 € R¥3HD  (q)
s = [pOT7 e ,pﬂT € R3(t1)

The first term in (3) is utilized to evaluate the fitting per-
formance between the approximated shape Gs and the feed-
back shape c, the constant bias 1 is used to prevent singu-
larity in logarithmic computation. The last term penalizes
the increase in n. Our goal is to minimize (3) to identify s
to represent the centerline ¢ adequately. For this issue, ana-
Iytical methods can be used, e.g., the least-squares method.
However, the traditional analytical method will affect the er-
ror of the fitting. It is difficult to obtain an analytical solu-
tion, especially when the fitting function is complicated (e.g.,
trigonometric, logarithmic, and exponential). In this paper,
the optimization-based algorithms are adopted to solve the
shape parameters p; of (3) without complex calculations and
a prior analytical structure. Generally used optimization al-
gorithms are as follows:

« GA has global searchability without falling into the trap

of rapid descent of locally optimal solutions [22];

e PSO is simpler than GA and can find the global opti-
mum with a strong global search ability for nonlinear
and multivariable problems [23];

o SAA is capable of avoiding the optimal local solution
and finding the global minimum solution in the sense of
probability by random search technology [24];

o ACO adopts a heuristic probability search method and a
distributed parallel computing manner, improving com-
putational efficiency and avoiding falling into the local
optimum [25].

Applying the above optimization algorithms on (3), we

can get the optimal s which can be used to represent the
three-dimensional feedback centerline ¢ of the elastic rod.

3.2 Approximation of Deformation Jacobian Matrix

In this paper, the quasi-static manipulation of the elastic
rod is considered. The robot pose r directly affects the cen-
terline ¢ of the elastic rod, which can be described by the
unknown nonlinear function, i.e., ¢ = f.(r). According to
(3), there is an unknown optimal mapping between s and c,
i.e., s = f5(c). Thus, the cascaded kinematic model from r
to s can be obtained by: s = f,(f.(r)). Differentiating this
model concerning time ¢, it yields

5= J()r 5)

where J(t) = 0s/0r € RP*? is the deformation Jacobian
matrix (DJM), which describes the velocity mapping associ-
ating s and r. As the deformation properties of the elastic rod



are unknown, thus DJM cannot be analytically computed.
Discretizing (5) yields the first-order difference equation:

S =sgp—1 +Ji - Ary (6)

Define the state x;, = [0s1/dr, ..., ds,/0r]" € RP? where
0s;/0r € RY¥4 is the ith row of J;. Afterwards, the dis-
crete system (6) can be transformed into the linear stochastic
system with no control input:

X = Xg—1 + Wi, Ye = My X, + Vi (N

where y, = Asy = si — si_1 is the system output. My, is
the measurement matrix defined by:

M, = diag (Ar{, ., ,Arz) € RP*Pe 8)

where wj, and vy, are the process noise and measurement
noise, respectively, which have the statistical properties:

E[Wk} = Tk, E[Vk] = Wk, E[WkVJT] = O,
Elwew!] = ®0kj, E[vivl] = Ukdy; ©)

where ®;, and W, are the covariance matrices for wj, and vy,
respectively, and dy; is a Kronecker-6 function [26]. Tradi-
tional KF [18] requires that wj, and v, are known Gaussian
white noise. However, during the estimation process, the sta-
tistical properties of wj and v may change. Thus, it cannot
be considered that w;, and v;, is Gaussian white noise. For
this issue, AKF [26] is utilized to compute the local estima-
tion of J; with approximating noise parameters simultane-
ously. The procedure can be summarized as follows:
Step 1: Prediction.

Rt = Xi—1 + Tt Prpor = Pror + &1 (10)
Step 2: Correction.

. —1
Ky =Py 1ML (MkPk,k—lMg + \I’kq)

Ye=Yr — MpXp g1 — Wr—1
Xk = Xpk—1 + Ki¥r
Pi = (Isp — KiMy) Pr 1 (1D

Step 3: Update

=1 —¢e)fp_1+e (X —Xp—1)

Wi =(1—¢)wp_1+e(yr — MpXpp-1)

Bp = (1—¢) D1 + £ (KignJT K + Py — Pry)
Uy = (1—¢) U1 +e (737 — MyP:MT) (12)

where 0 < € < 1 is the forgetting factor.
Step 4: Repeat steps 1-3 for the next update.
Finally, once we get X, at each step, Jj, is updated online.

3.3 Shape Motion Controller

Assuming AKF has accurately estimated DJM at the time
instant k, i.e., J r ~ Jp, such that the shape-motion differ-
ence model satisfies: s, = sp_1 + jk - Ary,. In this section,
the velocity command Ary, is designed to guide the robot

to deform the elastic rod such that its feedback shape ¢ ap-
proaches the constant desired shape c*. The deformation er-
ror is defined by e;, = s — s* between the feedback feature
si and the target feature s* representing c*, and it yields

er —ep_1 = JpArg, e +ep 1 = 2ep_1 + JpAry (13)

For this issue, the quadratic performance index is pre-
sented as follows:

Q = elei, + As} Asy, + wAri Ary, (14)

where w > 0 is a weight factor, which regulates the ampli-
tude and smoothness of Arj. Note that if w is too small, the
system may oscillate or even lose stability. To this end, let
us compute the partial derivative of (14) with respect to Ary,
and solve the expression for Ary:

Ary = -A 1 JTe, 1, A=uwl, +237J, (15)

Compared with the criterion index [27], the second term
considers the influence of s;_; on s;. When s, deviates
from s*, it takes into account the influence of Asj on the
system, thereby accelerating the system to reach the target
and overcoming the steady error. When the system is stable
(i.e., As; ~ 0), this term is near to zero where it is simi-
lar to [27]. The flow diagram of the proposed manipulation
framework is shown in Fig. 2.

Proposition 1. Consider the closed-loop system consisting
of the difference model (6), the model estimation algorithm
(10)-(12), and the shape-motion controller (15). Given the
desired shape s*, there exist appropriate design parameters
such that all signals in the closed-loop system remain ulti-
mately bounded, and the deformation error e, converges to
a compact set around zero.

Proof. The discrete Lyapunov function is defined by Vj, =
%efek, whose discrete difference is [28]:

1 1
AV, =V, — Vi1 = §e{ek — 5e;{_lek_1 (16)

By substituting (13) into (16), it yields

AV, = (ek-—l + %jkAI‘k)TjkAI‘k = —e{_lLek_l
L=J,A Y (wI, + 3313,) A TE (17)

Throughout this paper, J . is assumed to be full column rank;
therefore, the stability of the system is stable since V, > 0
and AV, < 0. As L is never full rank; thus L is only
symmetric semi-positive definite, which implies that ||ey||
can only converge to a local region near zero. As AKF
[26] is bounded in approximating DJM, with considering the
boundedness of e, thus Ary, is bounded. By the above anal-
yses, all signals in the closed-loop system remain bounded.
For such shape manipulation tasks, the global asymptotic
stability of e; cannot be guaranteed [29]. O

4 Simulation Results

In this section, simulations are conducted to validate the
effectiveness of the proposed framework. The three degree-
of-freedom robot Ar, = (Ary, Arg, Arz) € R? rigidly
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Fig. 2: The control workflow of the proposed manipulation
framework.

grasps one end of an elastic rod, while maintaining other end
fixed. The simulator of the elastic rod is designed referring to
[30] by using the minimum energy principle [31]. This sim-
ulator is publicly available at https://github.com/
gq546163199/shape_deformation/. The number of
center-points of the elastic rod is set to 20, i.e., N = 20. All
numerical simulations are implemented in MATLAB.

(a) Shape set-1

(b) Shape set-2
Fig. 3: Various shape sets generated by different robot con-
figuration.

Table 1: Fitting comparison results among GA, PSO, SAA,

ACO conducting with 100 shape sets

n G s Average time Average error
GA |6 60x21 21 0.557s 0.007
PSO | 6 60 x21 21 0.263s 0.073
SAA | 6 60x21 21 0.923s 0.278
ACO | 6 60x21 21 0.436s 0.027

4.1 Feature Extraction Comparison

In this section, the robot deforms the elastic rod contin-
uously to generate 100 shapes, which are used to validate
the effectiveness of the proposed optimization-based feature
extraction technique (3) among GA, PSO, SAA, and ACO.

Fig. 3 shows the sampled shapes among different robot
motions. Table 1 shows the comparison results, including
average computation time and the average error (¢ — Gs)
between the feedback shape ¢ and the reconstruction shape
Gs. PSO is the fastest, followed by ACO and GA, and SAA.
Reducing the number of particles in the PSO can further en-
hance its computational efficiency. As for accuracy, GA has
the best fitting performance, while SAA is the worst. There-
fore, considering the trade balance between accuracy and
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Fig. 4: Time evaluation of 73 and 75. The robot deforms the
elastic rod along a given trajectory. The abscissa is the step.

speed, GA is used with n = 6 in the following sections.

4.2 Validation of the Sensorimotor Approximation

In this section, the elastic rod is manipulated by the robot
along with a pre-defined trajectory (i.e., r; and Arj are
known) to evaluate the performance of AKF in approximat-
ing J; combined with Recursive Least Square (RLS) [32]
given in (18), Geman—McClure Estimator (GME) [20], and
Unscented Kalman Filter (UKF) [33].

(Ask — jk,lArk)Arka,l
n+ ArfU,_1 Ary
kalAI‘kAI‘kafl
n+ Ar;{Uk_lArk

jk = jk—l +

U, =Up_1 — (18)

where 0 < 1 < 1 is a forgetting factor specifying the influ-
ence of past data on the estimation. The initialization of Jo
is: Given an arbitrary m-step linearly independent random
motion at the initial position, Ary,...,Ar,,, and observe
the corresponding shape feature changes Asy, ..., As,,, fi-
nally it obtains: Jo = [Asy, ..., As,][Ary, ..., Ar,,] "
Two criteria are introduced to evaluate the approximation
performance [34]:

T1 = ||ék — Sk”7 T2 = ||Ask — JkAI'kH (19)
where §j, is given by §; = S§;_1 + JiAry, 8o = so.

Fig. 4 shows the evaluation curves of 7} and 75 during
the estimation procedure. AKF has the smallest 77, UKF
and GME are the second-best, while RLS is the worst. This
shows that the AKF can estimate the noise parameters and
provide feedback to compensate for the estimation of DIM
adequately. In terms of 75, AKF still performs best without
apparent fluctuations, which depicts that AKF can continu-
ously estimate DJM accurately and embody the strong adap-
tive ability and robustness in different local regions. The
above results prove that AKF can estimate DJM accurately
and continuously.

4.3 Manipulation of Elastic Rods

In this section, the robot is commanded to deform the elas-
tic rod into the target shape configuration. The accessibility
of the desired shape is guaranteed by moving the robot to
the specified position in advance and records. We show the
deformation trajectories every three discrete steps to visually
compare the manipulation performance.


https://github.com/q546163199/shape_deformation/
https://github.com/q546163199/shape_deformation/

=g > =T

(a) RLS

(b) GME
(c) UKF (d) AKF

Fig. 5: The deformation trajectories of the elastic rod during
the manipulation process within the controller (15) among
RLS, GME, UKF, AKF. Solid black line, solid blue lines,
and solid red line represent the initial, intermediate, and de-
sired shapes, respectively.
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Fig. 6: Time evaluation of the deformation error ||ey|| and
the velocity command Ary, during the manipulation process
among RLS, GME, UKF, AKF. The abscissa is the step.

First, the motion controller (15) is combined with RLS,
GME, UKEF, and AKEF, respectively. Fig. 5 depicts the de-
formation trajectories of the elastic rod. The solid black
line, solid blue lines, and solid red line represent the ini-
tial, transitional, and target shapes, respectively. As can be
seen from Fig. 5, each DJM estimator can complete the ma-
nipulation within the controller (15). Fig. 6 depicts the de-
formation error ||e|| and the velocity command Ary. AKF
within (15) has the fastest convergence speed and can ac-
curately estimate DJM and time-varying noise parameters,
which generates an appropriate controller Ary. And the pro-
posed optimization-based feature extraction technique can
well represent the centerline ¢ with a reduced-dimensional
feature vector. This can be verified from Fig. 5, the feed-
back shape c and the desired shape c* visually coincide.

Second, for the influence evaluation of control parameter
w on the controller (15), four cases (w = 1,w = 20,w =
50,w = 100) are given in Fig. 7 and Fig. 8. With the in-
crease of w, the convergence speed of e, gradually decreases
with a smoother control signal Ary. Therefore, by adjusting
w, the system’s dynamic characteristics can be regulated. In
practice, there is a trade balance between the convergence
speed of e, and the smoothness of Ary.

The above results show that the proposed manipulation

Ee— L e

(@w=1 (b)w =20
(©)w =50 (d) w = 100

Fig. 7: The deformation trajectories of the elastic rod dur-
ing the manipulation process within the controller (15) with
different control parameter w, ie., w = l,w = 20,w =
50, w = 100. Solid black line, solid blue lines, and solid red
line represent the initial, intermediate, and desired shapes,
respectively.
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Fig. 8: Time evaluation of the deformation error |lex|| and
the velocity command Ary, during the manipulation process
with different w. The abscissa is the step.

framework (i.e., representation, approximation, and control)
can perform the shape deformation task well with satisfying
performance.

5 Conclusion

This paper presents a vision-based manipulation frame-
work for the elastic rod without known physical properties.
An optimization-based feature extraction technique is de-
signed to represent the geometric centerline of the elastic
rod with a low-dimensional feature. AKF is used to estimate
DJM with time-varying noise matrices simultaneously itera-
tively; then, it is used to derive the shape-motion controller.
The closed-loop system is proved to be stable with Lya-
punov stability theory. The detailed simulations verify the
effectiveness of the proposed framework. For future work,
we will consider manipulating more complicated shapes and
combining neural networks with our research to further com-
pensate for shape perception.

References

[1] X. Li, X. Su, Y. Gao, and Y.-H. Liu, “Vision-based robotic
grasping and manipulation of usb wires,” in 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 3482-3487.



(2]

3

—

(4]

[5

—

(6]

[7

—

[8

—

[9

—

(10]

(1]

[12]

[13]

(14]

[15]

(16]

(7]

H. Wakamatsu, E. Arai, and S. Hirai, “Knotting/unknotting
manipulation of deformable linear objects,” The International
Journal of Robotics Research, vol. 25, no. 4, pp. 371-395,
2006.

S. Miller, J. Van Den Berg, M. Fritz, T. Darrell, K. Goldberg,
and P. Abbeel, “A geometric approach to robotic laundry fold-
ing,” The International Journal of Robotics Research, vol. 31,
no. 2, pp. 249-267, 2012.

J. Qi, G. Ma, J. Zhu, P. Zhou, Y. Lyu, H. Zhang, and
D. Navarro-Alarcon, “Contour moments based manipulation
of composite rigid-deformable objects with finite time model
estimation and shape/position control,” IEEE/ASME Transac-
tions on Mechatronics, 2021.

P. Zhou, J. Zhu, S. Huo, and D. Navarro-Alarcon, “Lasesom:
A latent and semantic representation framework for soft ob-
ject manipulation,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5381-5388, 2021.

D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y.-H. Liu,
F. Zhong, T. Zhang, and P. Li, “Automatic 3-d manipulation
of soft objects by robotic arms with an adaptive deformation
model,” IEEE Transactions on Robotics, vol. 32, no. 2, pp.
429-441, 2016.

S.Zou, Y. Lv, Y. Man, and W. Han, “Design and implement of
shape detection for the soft manipulator,” in 2020 39th Chi-
nese Control Conference (CCC). 1EEE, 2020, pp. 3972—
3977.

D. Navarro-Alarcon and Y.-H. Liu, “Fourier-based shape ser-
voing: A new feedback method to actively deform soft ob-
jects into desired 2-d image contours,” IEEE Transactions on
Robotics, vol. 34, no. 1, pp. 272-279, 2017.

G. Trejo-Caballero, H. Rostro-Gonzalez, C. Garcia-Capulin,
O. Ibarra-Manzano, J. Avina-Cervantes, and C. Torres-
Huitzil, “Automatic curve fitting based on radial basis func-
tions and a hierarchical genetic algorithm,” Mathematical
Problems in Engineering, vol. 2015, 2015.

Z. Q.-s. Z. Ling-qiu and Q. H.-c. L. Ji, “Curve fitting of b-
spline based on particle swarm optimization,” Computer Sci-
ence, 2009.

M. Sarfraz and M. Riyazuddin, “Curve fitting with nurbs us-
ing simulated annealing,” in Applied Soft Computing Tech-
nologies: The Challenge of Complexity. Springer, 2006, pp.
99-112.

M. Chun-tao, L. Xiao-xia, and Z. Li-yong, ‘“Radial basis
function neural network based on ant colony optimization,”
in 2007 International Conference on Computational Intelli-
gence and Security Workshops (CISW 2007). 1EEE, 2007,
pp- 59-62.

L. Zhao, J. Jiang, C. Song, L. Bao, and J. Gao, “Parameter op-
timization for bezier curve fitting based on genetic algorithm,”
in International conference in swarm intelligence. Springer,
2013, pp. 451-458.

D. Navarro-Alarcon, Y.-h. Liu, J. G. Romero, and P. Li, “On
the visual deformation servoing of compliant objects: Uncal-
ibrated control methods and experiments,” The International
Journal of Robotics Research, vol. 33, no. 11, pp. 1462-1480,
2014.

F. Alambeigi, Z. Wang, R. Hegeman, Y.-H. Liu, and M. Ar-
mand, “Autonomous data-driven manipulation of unknown
anisotropic deformable tissues using unmodelled continuum
manipulators,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 254-261, 2018.

D. Navarro-Alarcon, Y.-H. Liu, J. G. Romero, and P. Li,
“Model-free visually servoed deformation control of elas-
tic objects by robot manipulators,” I[EEE Transactions on
Robotics, vol. 29, no. 6, pp. 1457-1468, 2013.

R. Lagneau, A. Krupa, and M. Marchal, “Active deformation

[18]

[19]

[20]

(21]

(22]
(23]
[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

through visual servoing of soft objects,” in 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 8978-8984.

J. Qian and J. Su, “Online estimation of image jacobian ma-
trix by kalman-bucy filter for uncalibrated stereo vision feed-
back,” in Proceedings 2002 IEEE International Conference
on Robotics and Automation (Cat. No. 02CH37292), vol. 1.
IEEE, 2002, pp. 562-567.

D. Navarro-Alarcon, J. Qi, J. Zhu, and A. Cherubini, “A
lyapunov-stable adaptive method to approximate sensorimo-
tor models for sensor-based control,” Frontiers in Neuro-
robotics, p. 59, 2020.

H. Mo, B. Ouyang, L. Xing, D. Dong, Y. Liu, and D. Sun,
“Automated 3-d deformation of a soft object using a contin-
uum robot,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 4, pp. 2076-2086, 2020.

B. Siciliano, “Kinematic control of redundant robot manipu-
lators: A tutorial,” Journal of intelligent and robotic systems,
vol. 3, no. 3, pp. 201-212, 1990.

D. Whitley, “A genetic algorithm tutorial,” Statistics and com-
puting, vol. 4, no. 2, pp. 65-85, 1994.
M. Clerc, Particle swarm optimization.
2010, vol. 93.

E. Aarts, J. Korst, and W. Michiels, “Simulated annealing,” in
Search methodologies. ~Springer, 2005, pp. 187-210.

T. Liao, T. Stiitzle, M. A. M. de Oca, and M. Dorigo, “A uni-
fied ant colony optimization algorithm for continuous opti-
mization,” European Journal of Operational Research, vol.
234, no. 3, pp. 597-609, 2014.

R. Xiaolin, L. Hongwen, and L. Yuanchun, “Online image ja-
cobian identification using optimal adaptive robust kalman fil-
ter for uncalibrated visual servoing,” in 2017 2nd Asia-Pacific
Conference on Intelligent Robot Systems (ACIRS). IEEE,
2017, pp. 53-57.

D. Navarro-Alarcon, A. Cherubini, and X. Li, “On model
adaptation for sensorimotor control of robots,” in 2019 Chi-
nese Control Conference (CCC). 1EEE, 2019, pp. 2548-
2552.

S. Sarpturk, Y. Istefanopulos, and O. Kaynak, “On the sta-
bility of discrete-time sliding mode control systems,” /IEEE
Transactions on Automatic Control, vol. 32, no. 10, pp. 930-
932, 1987.

J.-J. Slotine and W. Li, Applied Nonlinear Control, 1st ed.
Upper Saddle River, NJ: Prentice Hall, 1991.

H. Wakamatsu, “Modeling of linear objects considering
bend, twist, and extensional deformation,” Proc.of IEEE
Int.conf.robotics Automation, 1995.

D. Fleisch and L. Kinnaman, “A student’s guide to la-
grangians and hamiltonians,” 2015.

K. Hosoda and M. Asada, “Versatile visual servoing with-
out knowledge of true jacobian,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS’94), vol. 1. IEEE, 1994, pp. 186-193.

J. Qi, W. Ma, D. Navarro-Alarcon, H. Gao, and G. Ma, “Adap-
tive shape servoing of elastic rods using parameterized regres-
sion features and auto-tuning motion controls,” arXiv preprint
arXiv:2008.06896, 2020.

J. Qi, G. Ma, P. Zhou, H. Zhang, Y. Lyu, and D. Navarro-
Alarcon, “Towards latent space based manipulation of elastic
rods using autoencoder models and robust centerline extrac-
tions,” Advanced Robotics, pp. 1-15, 2021.

John Wiley & Sons,



	Introduction
	Preliminaries
	Methods
	Feedback Shape Parameters
	Approximation of Deformation Jacobian Matrix
	Shape Motion Controller

	Simulation Results
	Feature Extraction Comparison
	Validation of the Sensorimotor Approximation
	Manipulation of Elastic Rods

	Conclusion

