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Abstract: The Calibration-free visual servoing control is challenging, since it is difficult to estimate the relationship between the 

motion of joint and the motion of image features. Previous studies often approximate the relation in purely online or offline ways. 

A scheme for robot arm manipulation with both online and offline learning is proposed in this paper. The relation is formulated in 

a local linear format with Jacobian matrix, which is approximated by radial-basis function network (RBFN). Primitively, the 

RBFN is trained offline to form a relatively appropriate estimation of the matrix, which is the beginning of the online step. Then, 

an online modification of the RBFN is executed to compensate the error caused by changes of camera’s position and pose or 

insufficient training. The simulation experiments show that the proposed scheme can provide a reliable offline trained model and 

can adapt well to the changes of camera’s position and pose due to the online update law. 
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1 Introduction 

In traditional applications, the robotic arm visual servoing 

system relies on a lot of calibration work, including: camera 

internal parameter calibration, robot kinematics and 

dynamic model parameter calibration [1-3]. Calibration has 

some obvious shortcomings, such as: it cannot be calibrated 

under high temperature and strong radiation; the system 

structure changes, the calibration parameters will change, 

and it needs to be re-calibrated regularly; the calibration 

process is complicated, requiring professionals and 

equipment, and the calibration cost is high [4,5]. These 

calibration tasks limit the development of intelligent robots, 

so researchers have begun to delve into uncalibrated visual 

servoing, such as estimating Jacobian matrices purely online 

using Kalman filtering, using neural networks to fit 

hand-eye relationships offline, etc. 

The uncalibrated visual servoing control for robot arm 

refers to a technology that uses visual feedback signals to 

construct a closed-loop control system guiding the robot to 

complete tasks related to end-effector’s position or pose 

without hand-eye relationship or pre-calibrating [2]. The 

demand for Stability and Practicality of robot arm 

end-effector position manipulation arouses a significant 

amount of research efforts. Robot visual servoing without 

calibration is a highly coupled and an uncertain complex 

nonlinear system [6]. In order to overcome the errors in 

camera and robot model caused by environmental change, 

the robustness of control system is highly concerned.  

Uncalibrated Visual Servoing system can be divided into 

image-based uncalibrated visual servoing (IBUVS) and 

position-based uncalibrated visual servoing (PBUVS) 
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according to whether the feedback signal is pure image 

information or estimated position information. Compared 

with PBUVS, IBUVS does not require parameters of camera 

and robot arm, making the hand-eye system more flexible 

and intelligent [7,8].  

As for image-based uncalibrated visual servoing, the 

estimation of the relationship between joint space motion 

and change of image characteristic is the key factors to 

ensure stability and robustness. Some classical methods 

estimate the relationship in purely online or offline way, 

which cannot find a better balance between system 

performance and system robustness [9]. These online 

estimated models are less accurate because only a small 

amount of local data can be utilized [10,11], and those 

offline models are formed based on data collected in specific 

situations, which does not necessarily apply in other 

situations [12]. 

In this paper, a scheme with both online and offline 

method for hand-eye relationship estimation is proposed. 

First, the hand-eye relationship is formulated in a linear 

format by Jacobian matrix. Then, an offline trained of 

radial-basis function network fitting the Jacobian matrix is 

carried out with data collected from UR5 joint motion based 

on the premise that the camera is at a specific position and 

pose. In order to improve the robustness of the system 

against camera pose changes and the insufficient 

performance of offline models, we propose an online update 

algorithm for the RBFN model trained offline. Using the 

Lyapunov function, we can prove the stability of the system. 

Finally, a series of simulation experiments are carried out to 

verify the superiority of the offline model used in this paper 

compared with the purely online Kalman filter estimation 

and the improvement of the system performance by the 

online update law for RBFN. 

2 Visual Servoing Control Systems 

Compared to position-based visual servoing control 

systems, image-based visual servoing control systems avoid 

the need for real-time estimation of the target's position in 
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the base coordinate system, reducing computational 

processes and system latency [8]; in addition, its control 

process does not include the robot and camera model 

parameters, so it has better robustness and a more 

comprehensive range of applications [9]. In the image-based 

visual servoing control scheme proposed in this paper (see 

Fig. 1), sensors such as depth cameras are used to obtain the 

current position of the end-effector of the robot arm in the 

camera coordinate system and use this as the present image 

feature, which is compared with the desired image feature to 

obtain the characteristic error. The characteristic error is 

converted into the value of the robot arm joint motion by 

correspondence to drive the end-effector of the robot arm to 

the desired position. 

Random motion

Offline training

Online update

Offline model

control

Jacobian matrix 

Joint control law

 

Fig. 1: Overview of the scheme for end-effector position 

manipulation 

As shown in Fig. 1, the image-based uncalibrated visual 

servoing scheme for end-effector position in this paper, is 

roughly divided into two parts: offline training and online 

update. In the first part, random motion in joint space is 

carried out, so that we get enormous data about joint motion 

and image feature captured by depth camera. These 

collected data is used for offline training. The trained RBFN 

can provide relatively accurate Jacobian matrix estimation. 

Once the actual operation starts, the system goes to online 

mode, of which the offline trained model is a start point. 

While manipulation, real-time data helps the online 

algorithm update the RBFN, making the RBFN resistant to 

environmental and model changes. The controller will 

continue to drive the end-effector to the desired position 

until the feature error converges to zero. The work of this 

paper is mainly the design of offline training, online update 

law and control law shown in Fig. 1. 

3 Methodology 

 The hand-eye relationship can be expressed as a 

differential formulation, that is, the velocity of joint space 

and velocity of characteristics captured by camera. The 

velocity of the image features can be locally linearly related 

to the velocity vector of the joint space using a Jacobian 

matrix. 

x J r=                                    (1) 

x  denotes the 3D coordinates measured by the depth 

camera, in other words, the image features. r  denotes the 

joint space vector of the robot arm. J  denotes the Jacobian 

matrix estimated in real-time. 

 The main problem of image-based uncalibrated visual 

servoing control system lies in the real-time estimation of 

Jacobian matrix and the design of the joint space controller. 

In this paper, we use a radial-basis-function neural network 

(RBFN) to map the current joint state to the local linear 

manipulation model. In the offline phase, the RBFN is 

trained on the data collected from UR5 model. Also, the 

module is updated online during operation, which reduces 

the impact of insufficient training or error of training data, 

thus increasing the system’s robustness. 

3.1 RBFN Model Offline Training 

 The RBFN is a forward network with global 

approximation capability and strong non-linear mapping 

ability. The training samples used in this paper are collected 

based on the UR5 robotic arm model. The design of the 

RBFN depends on the nature of the fitting target. 

 There is a significant difference in the impact of six 

individual joint angles on the end-effector features due to 

the characteristics of the robotic arm model. The Jacobian 

matrix can be written as 
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It is split into six column vectors, which indicate the effect 

of the motion of the joints on the image feature values 

respectively. Taking the UR5 robot arm as an example, the 

six joints correspond to different axis functions. 
1r  

corresponds to the arm body rotation axis, which carries a 

significant swing in the horizontal direction of the arm and 

has almost the most significant effect on the end-effector 

position. While, 
6r  corresponds to the end-effector rotation 

axis, which mainly affects the end-effector pose but has no 

impact on the end-effector position. From the first axis to the 

sixth axis, the impact of the rotations of the joints on the 

end-effector position and on the Jacobian matrix show a 

decreasing trend, the value of the joint angle of the sixth axis 

even has no impact on the end-effector position. 

 In order to measure the effect of each joint angle change 

on the Jacobian matrix, we define 
k k-J J J = , where  J  

denotes the original Jacobian matrix, and 
kJ  denotes the 

value of the new Jacobian matrix after the 
thk  joint is 

increased by 10°. By calculating the Frobenius norm value 

of the 
kJ  after the 

thk  joint change, the influence of the 

thk  joint change on the Jacobian matrix can be revealed. In 

order to measure the effect of each joint angle change on the 

end-effector position, the 2-norm value of the six columns 

from 1J  to 6J  shown in equation(2) is calculated. 

 Based on the UR5 robotic arm model, a number of states 

were selected at equal intervals in the 6-dimensional joint 

space. The mean of the 2-norm value of the six columns 

from 1J  to 6J  in these sample states and the mean of the 

Frobenius norm value of the matrix from
1J  to 

6J   in 



  

these sample states were found, and the results are shown in 

Fig. 2 and Fig. 3 respectively, which show a decreasing 

trend of the impact of the joints rotation on the end-effector 

position(shown in Fig. 2) and on the Jacobian matrix(shown 

in Fig. 3). 

 

Fig. 2: Mean of 2-norm of 1J  to 6J    

 

Fig. 3: Mean of Frobenius norm of
1J  to 

6J  

 These two properties are fully taken into account when 

designing RBFN. Because of the difference in the values of 

the six columns, six independent RBFN were constructed 

for the six columns of the Jacobian matrix with different 

learning rates while training. Since different joints have 

different effects on the Jacobian matrix, the basis function of 

RBFN is also modified appropriately as follows.  

 The RBFN has a three-layer structure: the input layer, the 

hidden layer, and the output layer [13]. In this paper, the 

number of nodes of the input layer is 6, consistence with the 

length of joint space vector; the number of nodes of the 

hidden layer is 216; the number of nodes of the output layer 

is 3. The outputs of the six RBF neural networks form the 

Jacobian matrix. 

 The mathematical model of the usually used RBFN is:  
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( ) 1,...,6i i i iJ W r= =，                     (4) 

Where
it represents the basis function value, and 

itu  

represents the center of the basis function, and
it represents 

the standard deviation. The center and standard deviation of 

the basis function can cluster the input samples. When 

calculating the distance between the sample and the cluster 

center, the Euclidean distance is usually used [14], as in 

equation (3). But this practice hides the fact that different 

joints have different effects on the Jacobian matrix. Assume 

that the input is a two-dimensional vector 1 6( , )r r , and that 

the 1r term is much more important than the 6r  term. If 1r  

and 6r  correspond to the same standard deviation 
it , 

consistent with the circular curve L  in Fig. 4. The points on 

the circle are considered as equal distances from the center, 

which is not consistent with the nature of the different 

importance of the two indicators. The ideal case corresponds 

to the elliptical curve M  in Fig. 4, where the indicator 

corresponding to the x-axis is more critical than the one 

corresponding to the y-axis. The issue of curve M 

corresponds to equation (5), where each dimension of the 

input sample corresponds to a different standard deviation. 

The points on the ellipse line are considered to have the 

same distance from the center. 
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Fig. 4: Consider Weighted Dual Metric Clustering 

 In the neural network training, we use the PyTorch 

framework to train the RBFN used to fit the 1J values. The 

two RBFN models used corresponding to (3) and (5). The 

mean square error (MSE) loss function value, see Fig. 5, 

indicates that the weighted RBF neural network basis 

functions are more consistent with the characteristic that the 

six joints have different weights on the end-effector 

position. 

 

Fig. 5: Training speed of two RBFN model 

3.2 Design of Sliding Mode Control with Real-Time 

Update Law and Stability Proof 

 The RBFN is trained offline based on the premise that the 

camera is at a specific position and pose. While in practice, 

the trained model is not always suitable due to wrong 

training data or inadequate training. In addition, when using 

the trained model, the camera model and the transfer matrix 

from camera to base coordinates have certain errors [15]. To 

address these issues, this section describes how to calculate 

the joint angle control law and the neural network model 



  

update value in real-time based on the feature error and 

gives stability proof. 

 After bringing equation (4) into equation (2), we get the 

velocity of characteristic. 

 
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Here we define the velocity error as 
6 6 6

1 1 1

ˆ ˆ
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Where ˆ
iW  represents the estimated fully connected layer. 

In addition, ˆ
i i iW W W = − . The RBFN are updated 

online with the aim, among others, of W and velocity 

error convergence to zero.  

 In this paper, sliding mode control is used to make the 

image characteristic error converge to zero, and the integral 

sliding surface is designed as 

1 2=c c dts x x+                           (8) 

The initial value of the integral term of sliding surface is set 

as 1 2dt c cx x= − , the term x  is determined by 

the initial state of the system, while the initial value of the 

integral term can be self-designed. By setting the initial 

value of the integral term, we can ensure that it is on the 

sliding mode surface at the very beginning, thus enhancing 

the convergence speed of the system. The joint control law 

is designed as  

2

1

ˆ( )
c

c
r J x
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where ˆ( )J
+

 is the Moore-Penrose pseudo-inverse of the 

estimated Jacobian matrix. In addition, 
dx x x= − where 

dx  is the desired position vector of the end-effector, and the 

number of 
1c and

2c  are positive. The online update law of 

the 
thj row of ˆ

iW  in the 
thi RBFN is designed as follows. 

T 2

1 1 2 1
ˆ ( )ij i i j i jc c c dt nW r x x e= + +       (10) 

Where jx  is the 
thj  element of the characteristic error 

x , and je  is the 
thj  element of the velocity error e . 

The 
1n is positive scalar. It can be seen that the information 

of the sliding surface is not included in the control law but is 

reflected in the update law of RBFN. The proposed scheme 

by (9) and (10) allows controlling the position of 

end-effector to a desired position, and compensating the 

error of the offline trained model. 

 The stability of the system is analyzed as follows. By 

multiplying both sides of (9) by Ĵ  ,we have  
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c
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Note that from (11) and (7), it can be obtained that 

ˆ ˆJr Jr Jr Jr e x= − + = − +                 (12) 

Substituting (11) into (12), we have  
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The Lyapunov function can be designed as 
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Bringing the equation (10) and the equation (8) into (14), we 

get 
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As 0V   and 0V  ,the closed-loop system is stable. 

When 0V  , there is 

6

1

0i i i

i

=e W r
=

  , and since 

2

1

ˆ( )
c

c
r J x

+= − , it follows from Lasalle's invariance 

principle that when t →+ , there is 0x → . 

4 Simulation results 

 We carry out simulation experiments to validate the 

proposed method. In order to show the superiority of 

performance of RBFN in this paper compared to 

performance of purely online estimation model. The first 

experiment executed by Kalman Filter method was carried 

out compared with the second experiment where Jacobian 

matrix was estimated by offline trained RBFN. The third 

experimental objective is to highlight the advantages of the 

integral sliding mode surface compared to the linear sliding 

mode surface. To verify that the update law can increase the 

system’s robustness, an additional set of experiments is 

conducted where the interference matrix is introduced. 

Assume that the original camera-to-end-effector transfer 

matrix expression is 

cam cam base

end base endT T T=                    (16) 

Because of error in the position and pose of the camera each 

time, there is actually an interference matrix:
cam1

camT  in the 

transfer matrix from the camera coordinate system to the 

end-effector of the robot arm, expressed as 



  

cam1 cam1 cam base

end cam base endT T T T=            (17) 

 For the first experiment, the Jacobian matrix is estimated 

purely online using Kalman filter; for the second experiment, 

the Jacobian matrix is estimated directly using an offline 

trained RBFN; for the third experiment, the sliding surface 

is designed as 
3=cs x . The robot arm joint control law is 

designed as ˆ( )kr J x
+= − , and the model update law is 

T
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it can be obtained that 
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         (18) 

Similarly, the stability of the system can be obtained. The 

fourth experiment is our scheme presented from (9) to (10). 

 When the interference transfer matrix is not considered, 

the simulation plots of each experiment are shown in Fig. 6. 

The method used in this paper converges faster compared to 

the other three methods. The third method based on linear 

sliding mode surface is still better than the RBFN without an 

online update method. Although the camera position and 

pose are consistence with that of offline training, the offline 

trained RBFN is not guaranteed to be the optimal solution in 

all cases. The norm of r  decreases as the characteristic 

error x converges to zero. Because the model update,  

W  reduces, making the RBFN adaptable to the change of 

r ， speeding up the convergence of e . The Kalman filter 

purely online update method uses significantly less 

information than the other methods with RBFN, and 

therefore its experimental performance is weaker than the 

other methods. Due to setting a reasonable initial value of 

the integral term, the method used in this paper is in the 

initial state on the sliding surface, and the convergence 

speed is better than that of the third method. 

 
Fig. 6: The simulation plot when there is no interference matrix 

 When considering the interference matrix due to camera 

position and pose errors, the simulation plot of each method 

is shown in Fig. 7, and the interference matrix is numerically 

set to 

cos( ) sin( ) 0 0
4 4

sin( ) cos( ) 0 0.2
4 4

0 0 1 0.2

0 0 0 1

cam1

endT

 
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=
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    (19) 

where the unit of length is in meters, and the unit of angle is 

in radians.  

 The online update method with Kalman filter generates 

larger errors at the beginning, because the initial estimation 

of Jacobian matrix is given without interference; as for thr 

second method, the RBFN trained without considering the 

interference matrix can still make the feature error converge 

to zero after the introduction of the interference matrix; and 

the third linear sliding surface-based method converges 

better than the method without the online update law. The 

performance of the algorithm used in this paper is still the 

best. 

 
Fig. 7: The simulation diagram when introducing the interference 

matrix 

5 Conclusion 

 To address the complexity and importance of real-time 

estimation of Jacobian matrix in the Calibration-free visual 

servoing system, this paper proposes an online updated RBF 

neural network and designs the corresponding integral 

sliding mode control law; some changes are made to the 

basis function of RBFN to make it more consistent with the 

characteristics of the robotic arm model, which improves the 

learning speed during training. The simulation results show 

that the sliding mode surface and the model update law used 

in this paper can accelerate the convergence of the system 

state, which is simple and effective. 
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