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ABSTRACT
The automatic shape control of deformable objects is a challenging (and currently hot) manipula-
tion problem due to their high-dimensional geometric features and complex physical properties. In
this study, a new methodology to manipulate elastic rods automatically into 2D desired shapes is
presented. An efficient vision-based controller that uses a deep autoencoder network is designed to
compute a compact representation of the object’s infinite-dimensional shape. An online algorithm
that approximates the sensorimotor mapping between the robots configuration and the object’s
shape features is used to deal with the latters (typically unknown) mechanical properties. The pro-
posed approach computes the rods centerline from raw visual data in real-time by introducing an
adaptive algorithmon thebasis of a self-organizingnetwork. Its effectiveness is thoroughly validated
with simulations and experiments.
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1. Introduction

Controlling the shape of soft objects automatically with
robot manipulators is highly valuable in many applica-
tions, such as food processing [1], robotic surgery [2],
cable assembly [3], and household works [4]. Although
great progress has been achieved in recent years, shape
control remains an open problem in robotics [5]. One
of the most crucial issues that hamper the implementa-
tion of these types of controls is the difficulty to obtain a
meaningful and efficient feedback representation of the
objects configuration in real-time. However, given the
intrinsic high-dimensional nature of deformable objects,
standard vision-based control algorithms (e.g. based on
simple point features) cannot be used as they cannot
properly capture the objects state. In this work, a solution
is provided to this problem.

The configuration of rigid objects can be fully
described by six degrees of freedom. However, represent-
ing the configuration of soft objects is difficult as they
have infinite-dimensional geometric information. There-
fore, a simple and effective feature extractor that can
characterize these objects in an efficient (i.e. compact)
manner should be designed [6]. At present, traditional
methods are roughly divided into two categories: local
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and global descriptors. Local descriptors may use cen-
troids, distances, angles, curvatures [7] to describe geo-
metric characteristics. But, these features must be hard-
coded and can only represent a limited type of shape
with showing part of the characteristics of the object.
Global descriptors produce a generic representation of
the objects overall shape. An example method under this
category is the Point Feature Histogram (PFH) reported
in [8], which forms a multi-dimensional histogram to
represent the overall shape of a soft object. Subsequent
efforts developed PFH into the Fast Point Feature His-
tograms (FPFH), which reduces computation time [9,
10]. However, these methods are limited by the acquisi-
tion accuracy of the RGB-D camera, and the computa-
tional cost is high. A method based on linearly param-
eterized (truncated) Fourier series was also proposed to
represent the objects contour [11]. This parameterization
idea was generalized in [12], wheremore shape represen-
tationswere analyzed and implemented.While, the above
geometric-based techniques generate high-dimensional
feature vectors, which may not be the most effective
representation method in soft object deformation.

Learning-based solutions have received considerable
attention due to their potential to learn (in latent space)
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shape representations of virtually any type of object from
data observations only [13, 14]. Force and position mea-
surements of a three-finger gripper manipulating a soft
object were used in [6] as input to a network, which
produced and predicted the objects contour (even for
unknown objects). A coarse-to-fine shape representation
was also proposed on the basis of spatial transformer net-
works, which allowed it to obtain good generalization
properties without expensive ground truth observations
[15]. Growing neural gas was used in [16] to represent
deformable shapes. However, the network structures of
the above methods are complicated without a satisfac-
tory operation speed. Note that real-time performance is
also an indicator of shape representation, not just accu-
racy. This is different from traditional computer vision.
A more efficient method is to generate feedback fea-
tures automatically (e.g. used in the soft object simulation
[17]) and combining them with dimension reduction
techniques [18].

Latent space approaches have been widely used in
data reduction, and image analysis [19] because they can
encode high-dimensional data into ameaningful internal
representation with low-dimensional variables by con-
structing highly flexible generators. A feature extractor
based on the convolutional autoencoder was developed
to obtain a low-dimensional latent space from tactile
sensing data [20]. Convolutional neural networks were
used to learn the physical model in the latent space
[21] to build the inverse kinematics of a rope [22].
Deep autoencoder was used for content-based image
retrieval by using semantic hashing to constructing short
binary codes [23], which allowsmuch too accurate image
matching and reduces the dimension of the image feature.
Despite its valuable (and reduction) feature extraction
properties, deep autoencoder has not yet been utilized in
soft object manipulation tasks. Although [24] proposed
a variety of methods, including autoencoder for shape
representation, the author did not form a complete con-
trol system, and [24] was based on the learning while our
proposed method is from the perspective of control.

In the current work, a new solution to the manipu-
lation problem of the elastic rod is proposed. The novel
contributions of this study are listed as follows.

(1) A centerline extraction algorithm based on self-
organizing maps (SOM) is presented for slender
elastic rods.

(2) A shape feature extraction algorithm is designed
using the deep autoencoder network (DAE). The
proposed method is used to represent the elastic rod
with finite-dimensional feature vectors.

(3) Detailed simulations and experiments are conducted
to validate the effectiveness of the proposedmethod.

To the best of the authors knowledge, this work is the
first attempt wherein a shape servo-controller uses DAE
to establish an explicit shape servo-loop. The remainder
of this study is organized as follows. The preliminaries are
presented in Section 2. The overall deformation control
implementation process is discussed in Section 3. Vari-
ous visually servoed deformation tasks of elastic rods are
shown in Sections 4 and 5. Conclusions and future work
are provided in Section 6.

2. Preliminaries

Notation. Column vectors are denoted with bold small
letters v and matrices with bold capital letters M. Time
evolving variables are represented asmk, where the sub-
script k denotes the discrete time instant. En is an n× n
identity matrix.

The deformation control scheme of a robot manipu-
lating the elastic rod based on visual servoing is investi-
gated. The following conditions are provided to foster an
understanding among readers:

• A fixed camera is used to measure the centerline
of the elastic rod, namely, eye-to-hand configuration
(depicted in Figure 1). The coordinates obtained are
denoted by:

c̄ =
[
cT1 , . . . , c

T
N

]T ∈ R
2N , ci = [ui, vi]T ∈ R

2 (1)

whereN represents the number of points thatmake up
the centerline, ui and vi represents the coordinates of
the ith (i = 1, . . . ,N) point in the image frame.

Figure 1. Schematic diagram of the elastic rod shape deforma-
tion. The camera is utilized to determine shape feature s in real
time, and within the designed controller the robot automatically
deform the real-time shape denoted by c̄ of elastic rods into the
target shape c̄∗.
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• Before the experiment, the robot has tightly grasped
the elastic rod; that is, object grasping is not the
research field of this article. Measurement loss is also
not a problem during the manipulation process.

• The robot supports velocity control mode, which can
accurately execute the given desired kinematic com-
mands �rk ∈ R

q [25] and satisfy the incremental
position motions rk = rk−1 +�rk.

• The robotmanipulates the elastic rod at low speeds, so
the shape is uniquely determined by elastic potential
energy.

Problem Statement.
Without any prior physical characteristics of elastic

rods, design a model-free vision-based controller which
commands the robot to deform the elastic rod into the
desired shape in the 2D image space.

3. Methods

3.1. Robust SOM-based centerline extraction
algorithm

Slender elastic rods whose lengths are much larger than
their diameters are used as the research object. There-
fore, the centerline describes the shape of the elas-
tic rods. Given that the centerline generally comprises
center-points for elastic rods, it should be fixed-length,
ordered, and equidistant for subsequent feature extrac-
tion and controller design. Although some centerline
extraction algorithms are used in the literature, e.g.
OpenCV/thinning, they cannot meet the above require-
ments and need pre-processing of data, which will dete-
riorate the systems real-time performance.

In this article, SOM is utilized to achieve real-time
2D centerline extraction of elastic rods without artificial
marker points. SOM is a neural network trained in an
unsupervised learning manner [26], which is originally
used for dimensionality reduction of high-dimensional
data. Here, it is used as a clustering algorithm. It gener-
ates a fixed number of clustering points from the image
data of the elastic rods. Finally, the centerline is composed
of the clustering points. The input of SOM is the white

area where the elastic rod is located in the binary image,
as shown in Figure 2. The points in the white area are
defined by m̄ = [mT

1 , . . . ,m
T
M]T ∈ R2M , mi ∈ R2 repre-

sents coordinates of each point in the image frame, and
M � N. With the clustering nature of SOM, a fixed-
length equidistant centerline can be obtained, namely,
SOM : 2M→ 2N.

Remark 3.1: Theproposed SOM-based centerline extra-
ction is only used in the experiment and not for simula-
tion. The centerline extracted by SOM is not guaranteed
to be ordered, so the sorting algorithm [12] is utilized
to reorder the centerline. This process will not take too
much time because N is small.

3.2. Feature extraction

A controller that can deform the real-time shape c̄ of elas-
tic rods into the target shape c̄∗ can be designed using
the centerline extracted by SOM.However, the centerline
cannot be directly inputted into the system.Given its high
dimensionality, it will make the system run slowly and
may even cause many adverse effects, e.g. loss of control.
Thus, designing a shape feature extraction algorithm for
elastic rods to reduce the feature dimension and represent
the centerline effectively is necessary.

In this article, DAE is used to extract shape features s ∈
R
p from the high-dimensional centerline c̄ ∈ R

2N . DAE
is an artificial neural network trained in an unsupervised-
learning manner, which can automatically learn latent
features from unlabeled data [24]. DAE comprises three
parts, an Encoder that projects the input into the hidden
layer, a hidden layer describing the latent feature s, and a
Decoder that reconstructs the latent feature into the orig-
inal input. Formally, the centerline c̄ ∈ R

2N is fed into
DAE andmapped to the hidden layer through the nonlin-
ear transformation s = fθ1(c̄) = sig(W1c̄+ b1), where
parameter set θ1 = {W1, b1}. W1 is a k× 2N weight
matrix, b1 is a vector of bias and sig is a sigmoid activa-
tion function, s(c̄) = 1

1+e−c̄ . The latent feature s is input
into the Decoder to generate a reconstruction ˆ̄c with
2N dimensions through the deterministic equation ˆ̄c =

Figure 2. Schematic diagram of SOM-based centerline extraction. The white area in the left side represents the area of elastic rod
(clustering area), and the red points in the right side represent the obtained centerline points (clustering points) (in this figure, N = 30).
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Figure 3. Structure of DAE with the centerline c as the input, and s is defined as the shape feature used for DJM approximation and
controller design.

gθ2(s) = sig(W2s+ b2), with θ2 = {W2, b2}. The param-
eters of θ1 and θ2 of theDAE are designed tominimize the
average error of reconstruction, which is defined as:

{
θ∗1 , θ

∗
2
} = argmin

θ1,θ2

N∑
k=1

L
(
ci, gθ2

(
fθ1 (ci)

))
(2)

where θ∗1 and θ∗2 are the ideal parameters, and L is
usually a mean square error. Once the Autoencoder is
trained, the centerline c̄ is input into the network, and the
low-dimensional shape feature s ∈ R

p can be obtained
through nonlinear transformations fθ1 . The workflow of
DAE is shown in Figure 3.

For DAE, the reconstruction output ˆ̄c is not the focus,
and only the Encoder is utilized to provide the shape fea-
ture s ∈ R

p once the DAE is trained. At present, DAE
has various forms. In this paper, multilayer perceptron
(MLP) is used, given its ability to handle 2D data effi-
ciently. The size of shape feature dimension p can also be
selected due to a trade-off balance. A small pwill improve
the system’s controllability, e.g. p<q. However, a large p
will enhance the representation accuracy of centerlines.
In the simulation and experiment, the effect of various p
on the shape representation capabilities is presented.

3.3. Approximation of the local deformationmodel

Given that regular (i.e. mechanically well-behaved) elas-
tic objects are considered, the centerline c̄ is extremely
dependent on the robot command r ∈ R

q can be defined
as the joint angles or end-effector’s pose in this study. The
relationship between c̄ and r can be represented by the
following unknown function (3).

c̄ = h (r) (3)

Following (3), the overall kinematics model from robot
command r to shape feature c̄ can be constructed as
follows:

s = fθ1(h(r)) (4)

Differentiating (4) concerning time variable t yields:

ṡ = J(t)ṙ (5)

where J(t) = ∂s/∂r ∈ R
p×q represents a Jacobian-like

matrix that describes the mapping between the feature
change speed ṡ and the velocity command ṙ, i.e. deforma-
tion Jacobianmatrix (DJM) [11]. The properties of elastic
rods are unknown, so the analytical form of J(t) cannot
be obtained. Discretizing (5) yields the first-order format
as follows:

sk = sk−1 + Jk�rk (6)

where�rk = rk − rk−1 ∈ Rq. The application of DAE as
feature extraction is the focus of this study. Accordingly,
the simple Broyden algorithms are used to compute local
approximations of Jk in real-time. Define the following
differential signal:

yk = �sk = sk − sk−1, uk = �rk = rk − rk−1 (7)

Broyden algorithms are as follows:

(1) R1 update formula [27]:

Ĵk = Ĵk−1 +
(
yk − Ĵk−1uk

)
uTk

uTk uk
(8)

This form has a simple structure and fast calculation
speed.

(2) SR1 update formula [27]:

Ĵk = Ĵk−1 +
(
yk − Ĵk−1uk

) (
yk − Ĵk−1uk

)T
uk
(
yk − Ĵk−1uk

)T (9)

The structure of SR1 is similar to R1, but the calcu-
lation accuracy is higher.

(3) DFP update formula [28]:

Ĵk = Ĵk−1 +
(
yk − Ĵk−1uk

)
yTk + yk

(
yk − Ĵk−1uk

)T
ukyTk

− yTk yk∥∥ukyTk ∥∥
(
yk − Ĵk−1uk

)
uTk (10)

DFP is a rank two quasi-Newton method, which is
efficient for solving nonlinear optimization.
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(4) BFGS update formula [29]:

Ĵk = Ĵk−1 −
Ĵk−1ukuTk Ĵ

T
k−1

ukuTk Ĵ
T
k−1

+ ykyTk
ukyTk

(11)

It is recognized with the best numerical stability.

When a new data pair (yk,uk) enters the system, DJM
Ĵk can be updated with the above estimators.

Remark 3.2: The robot is assumed to manipulate elastic
rods at low speed. Thus, the deformation of the elas-
tic rods is relatively slow. On the basis, DJM Jk can be
estimated online as the formula (4) is assumed to be
smooth.

3.4. Shape servoing controller

At the discrete-time instant k, DJM Ĵk has been assumed
to be exactly approximated by (8)–(11), so that the shape-
motion difference model is satisfied:

sk = sk−1 + Ĵk · uk (12)

Amodel predictive controller [30] is utilized tominimize
the shape deformation error ek = s∗ − sk between the
measured feature sk and a constant target feature s∗.With
the estimatedDJM Ĵk and (12), the predicted deformation
output at time k+w is shown below:

spk+w = sk + Ĵk · uk+w (13)

where w ∈ [0,H] represents the length of prediction
horizon, and uk+w = rk+w − rk. The reference defor-
mation trajectory at time k+w is calculated to ensure
smooth deformation of elastic rods and the estimation
accuracy of DJM as follows:

srk+w = s∗ − e−ρw · ek (14)

where ρ is a positive constant. Error ε between the ref-
erence and the prediction deformation at instant k+w is
defined as follows:

εk+w = srk+w − spk+w =
(
1− e−ρw) ek − Ĵkuk+w (15)

Velocity command uk is assumed to remain constant
from k to k+w and can be calculated by minimizing ε

from k to k+H, as shown below:

min
1
2

( H∑
w=0

αw
∥∥∥(1− e−ρw) ek − wĴkuk

∥∥∥2 + uTkQuk

)

(16)
where 0 < α ≤ 1, andQ is a symmetric and positive def-
inite matrix used to adjust the command uk. When the

command uk is too large, it will cause the robot to move
too fast and the manipulated object will oscillate. In turn,
the estimation accuracy of DJM will be affected. Taking
derivative of (16) with respect to uk, the gradient ∇ is
calculated as follows:

∇ =
H∑

w=0
−wαwĴTk

((
1− βw) ek − wĴkuk

)
+Quk (17)

where β = e−ρ . By setting∇ = 0, the velocity command
uk is derived [31]:

uk =
(
aĴk + ĴT+k Q

)+
(b− c)ek

a = (H2αH − 2b)/ lnα

b = (HαH lnα − αH + 1)/ln2α

c = (H(αβ)H ln(αβ)− (αβ)H + 1
)
/ln2(αβ) (18)

Thus, at each time instant, the incremental position com-
mand is calculated as follows:

rk = rk−1 + uk (19)

Following (12), it yields:

ek − ek−1 = −Ĵk�rk (20)

Ĵk is assumed to be a full column rank, and substitut-
ing (18) into (20) yields:

(
aEn + ĴT+k QĴ+k

)
(ek − ek−1)+ (b− c)ek = 0 (21)

As a>0, b−c>0, and ĴT+k QĴ+k is a positive-definite
matrix, the error ek asymptotically converges to error,
namely, limt→∞ sk = s∗k . However, when the reachabil-
ity of the desired goal s∗k is not satisfied, Ĵk may not be
a column full-rank matrix. The feedback error ‖ek‖may
only converge to the neighborhood near the origin. For
such under-actuated visual servo control tasks, guaran-
teeing the global asymptotic convergence is challenging
[32]. The workflow of the proposed framework is pre-
sented in Algorithm 1. Figure 4 gives the block diagram
of the proposed manipulation framework.

Remark 3.3: The velocity controller (18) and DJM esti-
mators (8)–(11) only require visual feedback datawithout
any additional sensors, prior knowledge of the system
model, and the requirement to calibrate the camera.
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Figure 4. The block diagram of the proposed manipulation
framework.

Algorithm 1Workflow of the proposed framework.
Require: Threshold;Max;
1: Give a target shape c̄∗ represented by s∗;
2: Conduct small deformations around the starting

configuration to initialize Ĵ0 and start the manipu-
lation;

3: k = 0
4: while ‖ek‖ ≥ Threshold and k < Max do
5: Record the current position rk and velocity uk;
6: Record the current shape c̄k;
7: Calculate the current shape feature sk by trained

DAE;
8: Calculate error ek = s∗ − sk;
9: Update uk,← (18);
10: Update Ĵk,← (8)- -(11);
11: Dual-arm robot moves using the updated uk;
12: k = k+ 1;
13: end while

4. Simulation results

The following case is considered: one end of an elastic rod
is rigidly grasped by a planar robot (2DOF) and the other
end is static. For brevity, the robot is not shown in the fig-
ures. The cable simulator is simulated as in [33] by using
the minimum energy principle [34], and publicly avail-
able at https://github.com/q546163199/shape_deformati
on/tree/master/python/package/shape_simulator. All
numerical simulations are implemented in Python.

4.1. Feature extraction comparison

In this section, 40,000 samples (N = 100) utilized to train
the DAE are generated by randomly moving the robot.
As previously mentioned in Section 3.2, DAE comprises

MLPs, as shown in Figure 5. DAE is implemented on
PyTorch and trained by adopting an ADAM optimizer
with an initial learning rate of 0.001 and a batch size
of 500. RELU activation functions are adopted in the
Encoder and Decoder.

For better illustration, ‖c̄− ˆ̄c‖ is defined by the recon-
struction error between the feedback shape c̄ and the
reconstruction shape ˆ̄c. The detailed comparison is pre-
sented in Figure 6 among DAE, Principal Component
Analysis (PCA) [18], Fourier [11] and NURBS [12].
We ensure that the dimension of the shape feature s
has increased to the limit of each method. p and k
determine the dimension of s of DAE and PCA, and
k is set to be equal to p for the fairness of competi-
tion. Detailed feature dimensions are set: p ∈ {1, 15} for
DAE, k ∈ {1, 15} for PCA, p ∈ {6, 10, . . . , 62} for Fourier,
and p ∈ {4, 6, . . . , 32} for NURBS. Note that the feature
dimension calculation of Fourier and NURBS is differ-
ent from DAE and PCA. The dimension of Fourier is
4n+ 2, and that of NURBS is 2n+ 2, where n represents
the fitting order. We set n ∈ {1, 15} here to be compared
fairly with DAE and PCA. The results in Figure 6 show
that DAE has the best accuracy in each dimension. DAE
with p = 15 has the best reconstruction accuracy, while
it has the lowest accuracy with p = 1. This means that
p is too low to represent the elastic rod fully. It can
be seen that when the dimension increases to a certain
extent, the fitting accuracy of DAE is no longer signifi-
cantly improved, which also means that DAE has a spe-
cific upper fitting limit. Theoretically, this limit can be
improved without increasing the feature dimension by
increasing the layers of the neural network and increas-
ing the data set. And DAE is compared with Fourier
[11] and NURBS [12], the latter two are geometric-based
methods. Figure 6 shows that DAE also performs better
than Fourier andNURBS. The feature dimension of DAE
is less than that of Fourier and NURBS under similar
accuracy, significantly enhancing the system’s stability.
Although, Fourier and NURBS can also achieve good
results in high-dimensional situations, this may affect the
robustness and stability of the system.And there is a trade
balance between feature extraction accuracy and feature
dimensions in shape deformation. For more informa-
tion about overdetermined visual servoing, we refer the
readers to [32] for detailed stability analysis. Consider-
ing the trade balance of system controllability and shape
representation, DAE with p = 4 is used in the following
sections.

4.2. Validation of the Jacobian estimation

In this section, we command the robot to move along
the circular trajectory around the center (0.4, 0.4) with

https://github.com/q546163199/shape_deformation/tree/master/python/package/shape_simulator
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Figure 5. Structure of DAE comprised of MLPs as the basic blocks of Encoder and Decoder. The centerline c̄ is fed into the trained DAE to
generate shape feature denoted by s.

Figure 6. Average shape reconstruction error comparison of 200 shape sets among DAE, PCA [18], Fourier [11] and NURBS [12]. The
dimension of each method is: p ∈ {1, 15} for DAE, k ∈ {1, 15} for PCA, p ∈ {6, 10, . . . , 62} for Fourier, and p ∈ {4, 6, . . . , 32} for NURBS
arranging from left to right.

known smooth �rk. The goal is to compare the accu-
racy of estimating DJM among R1, SR1, DFP, and BFGS,
and that obtained with Least Square Method [35] and
Inverse Matrix Calculation [18]. Different from initializ-
ing Ĵ0 with a random matrix, we command the robot to
move with small local motions (the motions are ensured
not to be collinear) and run the estimator to get a suitable
Ĵ0. Two error criteria (22) are introduced to quantify the
performance of such estimation:

T1 =
∥∥sk − ŝk

∥∥, T2 =
∥∥∥�sk − Ĵk�rk

∥∥∥ (22)

where sk is feedback shape feature generated by DAE, ŝk
is calculated by (23).

ŝk = ŝk−1 + Ĵk�rk, ŝ0 = s0 (23)

where Ĵk is estimated by R1, SR1, DFP, BFGS, Least
SquareMethod [35] and InverseMatrix Calculation [18].
ŝ0 and s0 are the initial values of ŝk and sk, respectively.
The evolution of T1 and T2 for the motions �rk exe-
cuted by the robot are demonstrated in Figure 7. It can
be concluded that BFGS owns the best estimation perfor-
mance amongst the compared algorithms (viz. R1, SR1,

Figure 7. Profiles of the criteria T1 and T2 that are computed
along the circular trajectory around the center (0.4, 0.4) among
R1, SR1, DFP, BFGS, Least Square Method [35] and Inverse Matrix
Calculation [18].

DFP, [18, 35]). The results corroborate that, when start-
ing deformation, BFGS can calibrate and update DJM
to identify the pseudo-physical parameters of the elas-
tic rods online. Specifically, BFGS can accurately estimate
the shape feature sk, and its differential changes�sk in the
latent space, which can guide the robotwith the estimated
DJM.
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4.3. Manipulation of elastic rods

In this section, we validate the performance of the pro-
posed shape controller by commanding the robot to
deform the elastic rods into the desired constant shape
c̄∗ (which is transformed into a desired shape feature s∗).
The error criterion (24) is utilized to assess the deforma-
tion performance.

T3 =
∥∥c̄k − c̄∗k

∥∥ (24)

The progress of the cable deformation among R1,
SR1, DFP and BFGS combined with the velocity com-
mand (18) is depicted in Figure 8. The curve of T3
and �rk are shown in Figure 10(a). Both figures show
that BFGS is the best method with the shortest conver-
gence time and smallest deformation error, followed by
DFP, and the effects of R1 and SR1 are similar. To bet-
ter demonstrate the usefulness and effectiveness of the
latent space approach in shape deformation, we com-
pare the error minimization performance of DAE with
that of NURBS [12], Fourier [11], and PCA [18] with
the DJM adaptively estimated by BFGS with the veloc-
ity controller (18). From Figure 9, it is concluded that
four algorithms all complete the shape deformation task.
Figure 10(b) shows that DAE provides the fastest error
minimization, while NURBS and Fourier give a similar

performance. The above results prove the effectiveness of
DAE in shape deformation than those that do not exploit
latent space.

5. Experimental results

Various experiments with two UR5 that support velocity
controlmode are conducted, as shown in Figure 11.�r =
[�rT1 ,�rT2 ]

T ∈ R
6. �ri1 and �ri2, i = 1, 2 represent the

linear velocity of end-effector along x-axis and y-axis of
each UR5 in the world frame. �ri3, i = 1, 2 represents
the angular velocity of the sixth joint of each UR5 along
the direction parallel to the z-axis in the world frame. A
Logitech C270 camera is used to capture the rod’s image
and combined with OpenCV to process on the Linux PC
at 30 fps. The deformation trajectories display once every
two frames to compare the convergence effects of each
algorithm. An experimental video can be downloaded
here https://github.com/q546163199/experiment_video/
raw/master/paper2/video.mp4.

5.1. Image processing

This section verifies the proposed SOM-based centerline
extraction algorithm and describes the image processing
steps.

Figure 8. Profiles of the shapedeformation simulation amongR1, SR1,DFPandBFGS combinedwithDAEand the velocity controller (18).
Red solid curve represents the initial shape, green dashed curves represent transitional trajectories, and the black solid curve represents
the target shape c̄∗ represented by s∗. The deformation trajectories display every three frames. (a) R1, (b) SR1, (c) DFP, (d) BFGS.

Figure 9. Profiles of the shape deformation trajectories among DAE, NURBS [12], Fourier [11] and PCA [18] combinedwith BFGS and the
velocity controller (18). Red solid curve represents the initial shape, green dashed curves represent transitional trajectories, and the black
solid curve represents the target shape c̄∗ represented by s∗. The deformation trajectories display every three frames. (a) PCA, (b) Fourier,
(c) NURBS, (d) DAE.

https://github.com/q546163199/experiment_video/raw/master/paper2/video.mp4
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Figure 10. (a) The profiles of the criterion T3 and velocity command �rk among R1, SR1, DFP and BFGS within manipulation. (b) The
profiles of the criterion T3 and velocity command�rk among DAE, NURBS [12], Fourier [11] and PCA [18].

Figure 11. Experimental setup comprised of two UR5 which support velocity control mode.

First, the proposed SOM-based method is compared
with two other centerline extraction algorithms. The first
one is based on theOpenCV/thinning developed in Refer-
ence [12], and the second one is based onCL, which is the
traditional clustering method [36]. All algorithms need
to provide an ordered, fixed-length N = 50, equidistant
centerline for the fairness of competition. The adjacent
distance along the rod of each point is approximately the
same, which is an important evaluation index. As the
CL-based and SOM-based algorithms only generate an
unordered fixed-length centerline, the sorting algorithm
[12] is used to sort unordered centerlines. For SOM, an
open-source toolbox provided by [37] is utilized. It can
be seen from Figure 12 that Reference and SOM have
similar extraction performance as both shapes look the
same. However, Reference sorts all the points first and
then performs down-sampling; thus, its calculation time

is slower than that of SOM and CL (see Table 1), which
is unfriendly to the real-time requirements of the sys-
tem. As for CL in Figure 12(b), the points on the left
and right sides are densely arranged, and the points in
the middle part are arranged loosely. This does not meet
the requirements of the equidistant arrangement. From
the perspective of extraction accuracy, SOM = Refer-
ence >CL. From the perspective of calculation time,
SOM < CL < Reference, see Table 1. Thus, SOMhas the
best performance with the fastest extraction speed, while
CL-based has the worst performance. One reason is that

Table 1. Comparison results among three centerline extraction
algorithms with N = 50.

Reference [12] CL [36] SOM

Time (Second) 1.68 0.98 0.38

Figure 12. Comparison of three centerline extraction algorithms, including reference [12], CL-based [36] and the proposed SOM-based.
(a) Reference [12], (b) CL [36], (c) Proposed SOM.
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the SOM toolbox is already highly optimized. Another
reason is that the centerline produced by CL-based and
SOM-based clustering algorithms has the advantage of
fixed-length and equidistant sampling. Thus, the SOM-
based centerline extraction algorithm is used by consid-
ering the reasons for accuracy and speed.

Second, the relevant image processing for centerline
extraction is provided. The overall process (as shown in
Figure 13) is as follows:

(1) First, segment the red areas nearby Gripper1 and
Gripper2 on the basis of HSV color space and
mark them as two green marker points. Then, seg-
ment the region of the interest (ROI) containing
the rod following both green marker points (see
Figure 13(a)).

(2) Next, identify the rod in ROI, remove the noise,
and obtain a binary image of the rod using
OpenCV morphological opening algorithm (see
Figure 13(b)).

Figure 13. Image processing steps. (a) ROI selection, (b) Thresholding, (c) Centerline (SOM), (d) Centerline sorting.

Figure 14. Average shape reconstruction error comparison of 200 shape sets among DAE, PCA [18], Fourier [11] and NURBS [12]. The
dimension of each method is: p ∈ {1, 15} for DAE, k ∈ {1, 15} for PCA, p ∈ {6, 10, . . . , 62} for Fourier, and p ∈ {4, 6, . . . , 32} for NURBS
arranging from left to right.

Figure 15. DJM Ĵk validation framework. (a) Motion trajectory of
the end-effectors of dual-arm UR5. (b) Comparison between the
visuallymeasured cable profile (green dot line) and its reconstruc-
tion shape obtained by DAE (red dot line) with p = 4.

(3) Subsequently, use the proposed SOM-based algo-
rithm to get an unordered centerline with N = 50
(see Figure 13(c)).

(4) Finally, apply the sorting algorithm [12] to get an
ordered centerline (see Figure 13(d)). The starting
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Figure 16. Profiles of the criteria T1 and T2 that are computed along the circular trajectory among R1, SR1, DFP, BFGS, Least Square
Method [35] and Inverse Matrix Calculation [18].

Figure 17. Initial (black solid line), transition (orange solid line) and target (blue solid line) configurations in the four shape deformation
experiments manipulated by dual-arm UR5. Each row represents the different initial and target shape, while each column represents
different DJM estimators, i.e. R1, SR1, DFP and BFGS. (a) Experiment1-R1, (b) Experiment2-R1, (c) Experiment3-R1, (d) Experiment4-
R1, (e) Experiment1-SR1, (f ) Experiment2-SR1, (g) Experiment3-SR1, (h) Experiment4-SR1, (i) Experiment1-DFP, (j) Experiment2-DFP, (k)
Experiment3-DFP, (l) Experiment4-DFP, (m) Experiment1-BFGS, (n) Experiment2-BFGS, (o) Experiment3-BFGS, (p) Experiment4-BFGS.
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point is the closest point to the right marker point
on the centerline.

5.2. Feature extraction comparison

Similar to Section 4.1, 40,000 samples are generated in
the same way. The structure of DAE is similar with
Section 4.1, as shown in Figure 5. Batch-Normalization-
1D (BN) is added after each layer. Figure 14 shows
that DAE with p = 15 has the highest reconstruction
accuracy while that of p = 1 is the worst. In the same
feature-dimensional, DAE is better than PCA [18]. We
also compare DAE with Fourier [11] and NURBS [12].
The results in Figure 14 give that DAE still has the best
reconstruction accuracy with lower-dimensional feature
vectors than Fourier and NURBS. The above results are
consistent with the simulation results, which fully proves
the effectiveness of DAE in the shape representation.
In the following sections, we uniformly use DAE with
p = 4.

5.3. Validation of the Jacobian estimation

Similar to Section 4.2, dual-arm UR5 is commanded to
move along a fixed circular trajectory, as depicted in
Figure 15(a). The shape reconstruction performance of
DAE with p = 4 is accurate in the experiment, as shown

in Figure 15(b). Same as before, R1, SR1, DFP and BFGS
are compared with [38] and [18]. The results in Figure 16
show that BFGS has a minimal approximation error,
which confirms that BFGS has a superior performance
in estimating the unknown DJM.

5.4. Manipulation of elastic rods

Similar to Section 4.3, we conducted an experimental
research where the dual-armUR5manipulates the elastic
rod to various target shapes. We describe these exper-
iments as Exp1 . . . Exp4 with different initial and tar-
get shapes. Considering safety, the saturation of �r is
set to, |�ri1| ≤ 0.01m/s, |�ri2| ≤ 0.01m/s and |�ri3| ≤
0.1 rad/s, i = 1, 2, 3, respectively.

Figure 17 presents the active shape deformation tra-
jectories (represented by the green centerlines) of the
elastic rod towards the target shape (represented by the
red centerline). This figure qualitatively compares the
centerline trajectories of different target shapes (each in
a separate row) with the four DJM estimators (each in
a separate column). Figure 18 shows the time evolution
of the shape error T3 and the respective velocity com-
mand signals �rk. From these results, it can be seen that
BFGS has the best control effect with the fastest con-
vergence speed and has excellent adaptability to various
conditions in the shape deformation, which is consistent

Figure 18. Profiles of the criterion T3 and velocity command �rk among R1, SR1, DFP and BFGS within four shape deformation
experiments. (a) Experiment1 result, (b) Experiment2 result, (c) Experiment3 result, (d) Experiment4 result.
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Figure 19. Initial (black solid line), transition (orange solid line) and target (blue solid line) configurations in the comparison experiment
manipulated by dual-arm UR5 among DAE, NURBS [12], Fourier [11] and PCA [18] combined with BFGS and the velocity controller (18).
(a) Fourier, (b) NURBS, (c) DAE.

Figure 20. Profiles of the criterion T3 and velocity command �rk among DAE, NURBS [12], Fourier [11] and PCA [18] combined with
BFGS and the velocity controller (18).

with the simulation results. Same as before, we com-
pare the error minimization performance of DAE with
that of NURBS [12], Fourier [11] and PCA [18] with the
DJM adaptively estimated by BFGSwith the velocity con-
troller (18). Figure 19 shows that the shape deformation
trajectories among four shape feature extraction algo-
rithms. Figure 20 shows that DAE provides the fastest
error minimization compared to the other methods. The
above results prove the effectiveness of the proposed
framework in the shape deformation and prove the effec-
tiveness of DAE in the shape representation than those
that do not exploit latent space.

6. Conclusions

A framework for the deformation control of elastic rods
is proposed without any prior physical knowledge. It
includes shape feature extraction, DJM estimation, and a
robust SOM-based centerline extraction algorithm. First,
new shape features based on DAE are utilized to repre-
sent the elastic rod’s centerline in the low-dimensional
latent space. Second, the performance of four DJM esti-
mators (R1, SR1, DFP, and BFGS) is evaluated. Third,
the velocity controller is derived and the system stability
is proven. Finally, the effectiveness and feasibility of the

proposed algorithm are validated by the numerical and
experimental results.

DAE is used in this study tomap the high-dimensional
geometric information of elastic rods flexibly into a low-
dimension latent space. The proposed feature extraction
algorithm has better shape representation capabilities
than the traditional PCA. It also does not require any
artificial markers, making it widely applicable to practi-
cal situations. Broyden algorithms are used to approxi-
mate DJM in real-time. In this way, the physical param-
eters and camera models are not identified. From the
results, BFGS has the advantages of simple structure, fast
calculation speed, and accurate approximation perfor-
mance. Simultaneously, a robust SOM-based centerline
extraction algorithm with a fast calculation speed and
high extraction accuracy is designed. The overall system
is completely calculated from the visual feedback data,
without any prior physical characteristics of the elastic
rod and the requirement to calibrate the camera.

The proposedmethod also has some limitations. First,
the manipulated object is only soft elastic objects, e.g.
carbon fiber rod. Thus the proposed algorithm is not suit-
able for inelastic items, e.g. plasticine and rope. Second,
although DAE has a good shape representation ability, it
needs an extensive and rich-enough dataset to train itself,



114 J. QI ET AL.

which has particular difficulties in practical applications.
Third, the approximation ofDJMbased onBroyden algo-
rithms is easy to fall into the local optimum, which may
generate the destructive operation, such as over-tension
and over-compression in the manipulation process.

In the future, 3D deformation tasks will be included
to manipulate more complex shapes, e.g. M-shaped and
spiral. Moreover, the existing DAE needs to be improved
to be suitable for different scenarios and materials. Path
planning should be considered to avoid possible destruc-
tive operations during the manipulation process.
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