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A B S T R A C T   

Soft manipulator is a strong non-linear and uncertain system with infinite degrees of freedom. The real-time 3D 
shape estimation is the guarantee for control and application, but a single kind of sensor technology always has 
inherent limitations. To address the above issue, firstly, the constant curvature (CC) kinematics is proposed to 
roughly estimate the 3D shape of the soft manipulator, because this method becomes inaccurate when the 
manipulator is bent with large deformation. Secondly, a vision-based high-precision shape estimation method is 
developed. The self-organizing map (SOM) adaptive algorithm is introduced to identify the centerline of the 
manipulator from the image data. While vision sensing has strict requirements for the environment. Therefore, a 
learning approach based on a deep neural network (DNN) is designed to correct the CC kinematics with accurate 
visual estimation results. Finally, the performance of the trained DNN is evaluated on the test set and a real-time 
bending deformation experiment. The results indicate that the DNN approach has high accuracy and stability 
ability to learn the entire 3D shape of the soft manipulator in real time.   

1. Introduction 

Soft manipulator [1] is an emerging research field in robotics and 
have therefore been extensively studied. In recent years, more and more 
research on the soft manipulator has gradually developed from theo-
retical simulation to assessment experiment and even practical appli-
cation. Especially in unstructured and constrained environments such as 
ground rescue, industrial inspection, and unknown exploration [2], the 
natural dexterity and inherent compliance allow the soft manipulator to 
safely adapt to narrow paths by changing its shape, which is an 
impossible task for the traditional rigid manipulator. 

However, the flexibility and nonlinear driving deformation brought 
by flexible materials often hinder the accurate control of the soft 
manipulator in applications. In complex and constrained environments, 
real-time shape information is essential to improve control accuracy, 
and visualizing the shape of the soft manipulator also facilitates users to 
better operate and avoid obstacles. To date, numerous classical and 
effective shape sensing methods have been proposed and applied to 
practical systems [3,4]. 

In this application scenario, internal sensors embedded or integrated 
within the manipulator become a better choice. A common approach to 
estimating the shape of the soft manipulator is measuring the length of 

the pneumatic muscle actuators (PMAs) with a cable encoder as a sensor 
to develop the constant curvature (CC) kinematics model [5], and the 
hardware experiments have been implemented on a variety of 
multi-section soft manipulator. But this method overly relies on the CC 
assumption so that is not applicable in the case of large deformation [6] 
or gravity load effect [7]. Thus, some studies have emerged to moder-
ately modify the CC kinematics. Godage et al. [8] applied the modal 
kinematics model to circumvent the singular problem in CC kinematics 
but could not detect the non-constant curvature deformation yet. A 
variable curvature modeling method based on Euler spirals [9] is 
addressed to match the real 2D shape better in some poses. Dynamic 
model can more accurately model the shape of the soft manipulator. 
Rone [10] adopted length variables to deduce the dynamic model 
through the virtual power principle to capture the curvature change and 
3D torsion along the backbone. Almost all dynamic models [11,12] 
consider complex mechanical models with massive calculations which 
increases the difficulty of real-time control, and the placement of the 
force sensor also affects the flexibility of the soft manipulator. Regarding 
other types of sensors, Song et al. [13] installed electromagnetic sensors 
at the distal end of a wire-driven flexible manipulator to track shape 
information in real time. Fiber optic sensor for continuously changing 
media has been experimentally demonstrated to capture the actuator’s 
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shape and tip position with submillimeter resolution [14]. The 
above-mentioned solutions based on internal sensors all require math-
ematical analysis models, whereas there are many inexplicable charac-
teristics in the modeling process, including parameter uncertainty, 
friction, and hysteresis of soft materials. For convenience, many ideal 
assumptions are defaulted, resulting in the shape sensing tending to be 
imprecise for this type of sensor. 

On the contrary, some solutions use the relatively reliable vision- 
based external sensor, as this approach [15] only requires image data 
to accomplish 3D shape recognition with the highest possible accuracy. 
From the pioneering work of configuring the monocular camera to 
monitor the plane motion of the elephant-trunk robot [16], to later 
establishing stereo [17] and trinocular [18] vision systems, scholars are 
trying to deal with the challenge of shape estimation of the soft 
manipulator by machine vision, and some cases have been considerable 
advances in minimally invasive surgery [19]. But visual sensing is not 
feasible to directly apply in outdoors or constrained environments. 

As we can see, considerable research efforts have been devoted to 
making various improvements to the shape sensing system with a single 
kind of sensor, whether in a physical model or sensing technology. 
However, in essence, it is still unable to break the inherent defects 
brought by the single kind of sensor. The learning-based approaches 
[20], namely machine learning (ML), have been fully identified as an 
effective solution to improve the scope. For example, Loutfi et al. [21] 
compared the performance of four different learning models in the 
forward kinematics of the continuum manipulator. The supervised 
learning method and the Jacobian method for solving the inverse statics 
of a cable-driven soft arm with non-constant curvature are discussed in 
[22]. Melingui et al. [23] designed an adaptive neural network 
controller that enables the compact bionic handling arm to track the 
desired path in real time with high accuracy. Gaussian mixture model 
[24] is reported to learn multiple trajectory models of demonstration 
teaching in the surgical task. With the development of GPU computing 
power and open access packages, deep learning provides more advanced 
alternatives to learn and optimize the results of ML. Wang et al. [25] 
took advantage of the convolutional neural network to encode the image 
into the deformation state and trained a decoder neural network to 
reconstruct the soft body’s 3D shape. Li et al. introduced the 
long-short-term-memory neural network to dynamically estimate the 
distal force of the flexible endoscopic robot [26]. Su et al. [27] con-
structed an improved recurrent neural network-based control scheme to 
optimize the end error of the surgical robot within 4 mm. Also, the in-
cremental learning process has been proved to optimize redundancy and 
achieve fast and efficient learning [28]. Little is done, still, about the 
study of shape estimation with learning approaches. There are merely 
some studies on learning the real end position of the soft manipulator 
followed by multilayer perceptron (MLP) [29,30]. Unlike the rigid-link 
manipulator, the end position is not a good measure of the complete 
shape of the soft manipulator since this continuous deformation could be 
in any one state of infinite possibilities. Compared with MLP, deep 
neural network (DNN) emphasizes the depth of the model structure, that 
is, it has more hidden layers and enough hidden neurons to learn more 
features in essence. Hence, perhaps it can be utilized to learn all infor-
mation about the 3D shape of the soft manipulator, not just the position 
of the end. 

In this work, a DNN approach is presented to establish the mapping 
relationship between length information and visual markers to estimate 
the 3D shape of the soft manipulator accurately. Our main contributions 
are outlined as follows:  

(1) The advantages and limitations of constant curvature kinematics 
and visual shape estimation are analyzed in detail through 
experimental simulation comparisons.  

(2) A DNN approach is raised to learn the entire 3D shape of the soft 
manipulator, which shows great stability and accuracy in the test 
set and real-time deformation experiments. 

(3) The proposed learning-based method circumvents the compli-
cated modeling process, and ingeniously complements the ad-
vantages of two sensing systems. This general approach is 
instructive and can be applied to any continuum manipulator. 

2. System overview 

In the feedback loop, the quality of the shape estimation system at-
taches great importance to the whole closed-loop control system. A soft 
manipulator platform is set up to conduct the relevant experimental 
support verification (see Fig. 1), containing electric control system, 
pressure-actuated system, and shape estimation system. 

The 24 V DC power supply and self-made buck module meet the 
various voltage requirements of the whole platform. The air compressor 
and valve island (Festo, Germany) provide the high-pressure source, and 
the DA converter converts the control signal into UC to control PC, and 
finally the shape of the soft manipulator is deformed by means of 
pressure drive. 

There are two shape estimation systems in the experimental setup 
(discussed in Sections 3 and 4). The microcontroller STM32 reads the 
signals from the cable encoders and wirelessly transmits {l11, l12, l13} to 
the workstation via Bluetooth. The ASES outputs Q̂ by the stereo camera 
(ZED, USA), but it is just offline training the DNN model in advance. 
After the DNN model is obtained, Q̃ can be output only by running the 
RSES in real time, which implements vision correction (more details in 
Section 5.1). The simulation of the 3D shape for the soft manipulator can 
be displayed on the workstation. 

2.1. Prototype description 

We designed and fabricated a pressure-actuated soft manipulator for 
the unit section in this work. The component unit of the prototype is the 
PMA, made by covering the surface of the silicone rubber tube with the 
nylon mesh. a pneumatic connector is directly plugged into the silicone 
rubber tube to control the flow of air, while the other end is tightly 
sealed with the help of the cable tie (Fig. 2). Each PMA has an individual 
chamber as the pressure control channel, which can extend up to 200% 
and withstand 0–3 bar pressure range. Three identical PMAs, distributed 
symmetrically in parallel, are circumferentially connected to actuate the 
prototype together. Besides, the gaps between PMAs are tightly fixed by 
the braided thread to ensure the prototype’s shape is as close as possible 
to the feature of CC. Compared with other prototypes [31], the actuator 
configuration we designed can bend in any direction instead of one 
when each PMA is filled with different pressure. 

2.2. Sensor network distribution 

As the sensor distribution of RSES, three cable encoders are installed 
120◦ apart from each other at a radius d from the center of the circular 
base. Note that the cables from encoders parallel to the centerline are 
attached in the gap between PMAs and consistent with the length 
variation of PMAs for accurate measurement in real time. Here, we 
delivered a 3D illustration and top view of the sensor network distri-
bution, as given in Fig. 3. 

The visual shape detection system is quite simple with only ZED. It is 
fixed on a tripod with adjustable height to ensure all the workspace of 
the manipulator is covered by the vision field. All programs in this work 
are run on the workstation (Intel Xeon Bronze 3104 CPU, 32 GB RAM, 
NVIDIA Quadro P4000). 

3. RSES based on CC kinematics 

In this section, the CC kinematics based on PAM length is proposed to 
roughly estimate the 3D shape of the soft manipulator. The experiment 
results then illustrate the advantages and limitations of CC kinematics 

S. Zou et al.                                                                                                                                                                                                                                      



Sensors and Actuators: A. Physical 344 (2022) 113692

3

with several examples. 

3.1. Model definition 

The principle of the CC method indicates that the unit-segment soft 
manipulator bends as a standard arc, which simplifies the kinematics 
into an ideal characteristic. Therefore, some assumptions should be 
considered during the modeling process: (1) The prototype deforms 
continuously and evenly, and the bending sections of PMAs are equal in 
each segment; (2) Torsion can be ignored. 

To illustrate the CC model, the unit-segment soft manipulator is 
designed in Fig. 4a. Ai,j represents the position of the cable encoders, 
where i is the segment number, and j ∈ {1,2,3} refers to the cable en-
coders number. The length of the PMAs lij ∈ ℝ is parallel to the backbone 
OiOi+1, which is measured by cable encoders. Due to the material 
properties of our prototype, the variation range of the lij can reach lmin =

77mmand lmax = 252mm separately. We denominate qi = [li1, li2, li3]Τ ∈

Fig. 1. The block diagram of the whole soft manipulator platform. PC ∈ [0, 10]bar is the pressure vector of three proportional valves (Festo, Germany). is analog 
voltage vector as three outputs of the DAC. Q̂ denotes the results of the ASES, and Q̃ is the prediction output of the DNN. Also, the dashed arrow indicates an 
offline system. 

Fig. 2. Materials and local details of the prototype. ① is the nylon mesh to limit 
radial contraction and axial elongation for PMAs; ② is silicone rubber tube; ③ 
are pneumatic connectors made of 3D printing. 

Fig. 3. Sensor network distribution. (a) 3D illustration (b) Top view.  
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ℝ3 as the joint vector for convenience. The local coordinate {Oi − XiYiZi}

is established in this way: With the center of the baseplate as the origin 
Oi, the Zi axis is downward perpendicular to the baseplate. Besides, the 
Yi axis passes through the point Ai,1. 

The backbone OiOi+1 depicts the spatial shape of the soft manipu-
lator. It can be expressed by three spatial arc parameters {L,κ,ϕ}. Li is the 
arc length, κi ∈ (0,∞) is specified as the curvature, and ϕi ∈ [ − π/2,
3/2π), the bending plane angle, is defined as the angle formed by the Xi 
axis and the plane where the backbone is located. More details are given 
in Fig. 4b. 

3.2. CC kinematics 

Generally, CC kinematics is decomposed into two continuous pro-
cesses to complete the mapping from joint space to workspace. (1) Joint 
space to configuration space: qi is first transformed into spatial arc pa-
rameters {Li, κi,ϕi} through the spatial geometric derivation F. This 
mapping is related to the structural design of the robot; (2) Configura-
tion space to work space: {Li, κi,ϕi} are then transformed into the pose of 
end-actuator Pi ∈ ℝ3 by improved D-H method. This mapping is uni-
versal and applicable to all constant curvature robots. The above map-
ping relationship can be concluded as 

qi⟶F {Li,ϕi, κi}⟶D− H Pi (1) 

The following paragraphs clarify the two mapping processes. Firstly, 
by means of spatial geometric derivation (refer to [32]), the spatial arc 
parameters in configuration space can be obtained with the help of joint 
vector 

Li(qi) = (li1 + li2 + li3)/3 (2)  

κi(qi) =
2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

l2
i1 + l2

i2 + l2
i3 − li1li2 − li1li3 − li2li3

√

d(li1 + li2 + li3)
(3)  

ϕi(qi) = tan− 1
( ̅̅̅

3
√ (

li2 + li3 − 2li1

)/
3(li2 − li3)

)
(4)  

where d is the radius of the baseplate. Note that formula (4) is further 
explained here. Since the range of tan− 1(x) is [ − π/2, π/2], the pose of 
the soft manipulator cannot cover the entire 3D space. Considering the 
distribution of PMAs, we improve formula (4) according to the relative 
relation between the value of lij 

ϕ∗
i (qi) =

{
ϕi, (ϕi >0 ∩ li1 < li2) ∪ (ϕi <0 ∩ li1 > li3)

ϕi + π, (ϕi >0 ∩ li1 > li2) ∪ (ϕi <0 ∩ li1 < li3)
(5) 

Subsequently, the pose vector of the end-actuator with respect to the 

local coordinate pi ∈ ℝ3 is figured out 

pi =
[
px

i , p
y
i , p

z
i

]T

= [cϕi(1 − cθi)/κi, sϕi(1 − cθi)/κi, sθi/κi]
T

(6)  

where c≜ cos and s≜ sin. θi is the central angle of the backbone, which 
can be easily calculated by θi = Liκi. The pose of the end-actuator is 
simulated in Fig. 5 to show the working space for the unit-segment 
manipulator. 

The improved D-H method is employed to calculate the homoge-
neous transformation matrix (HTM) to construct the spatial attitude 
transformation between adjacent segments (see Fig. 6). 

Through a series of orderly rotation and translation operations, the 
HTM Ti

i+1 ∈ SE(3) from segment i to segment i+1 is derived in (7). More 
details are in [12]. 

Ti
i+1 = Rz(ϕi)Px(1/κi)Ry(θi)Px(− 1/κi)Rz( − ϕi

)

=

⎡

⎣
Ri

i+1 pi

01×3 1

⎤

⎦
(7)  

where Rz, Ry ∈ ℝ4×4 are the homogeneous rotation matrices of the Zi 

and Yi axes, respectively. Px ∈ ℝ4×4 is the homogeneous translation 
matrix along the Xi axis. In addition, Ri

i+1 ∈ SO(3) and pi are the 
orientation matrix and pose vector of the end-actuator along the back-
bone. The expression of the matrix Ri

i+1 is described as 

Ri
i+1 =

⎡

⎣
c2ϕi

(
cθi − 1

)
+ 1 sϕicϕi(cθi − 1) cϕisθi

sϕicϕi(cθi − 1) s2ϕi
(
cθi − 1

)
+ 1 sϕisθi

− cϕisθi − sϕisθi cθi

⎤

⎦ (8) 

Fig. 4. Schematic of unit-segment soft manipulator. (a) The unit segment model. (b) Geometric schematic.  

Fig. 5. The working space for the unit-segment manipulator.  
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Multiply Ri
i+1 for each segment sequentially, the orientation matrix 

Ri relative to the global coordinate {O1 − X1Y1Z1} is yielded as 

Ri =

{
Ri

i+1, i = 1
Ri− 1Ri

i+1, i > 1
(9) 

Furthermore, the recursive formula of the pose of the end-actuator in 
the global coordinate is obtained accordingly. 

Pi =

{
pi, i = 1
Pi− 1 + Ri− 1pi, i > 1 (10) 

In a word, the kinematics for the multi-segment soft manipulator is 
generated iteratively to accomplish the entire mapping from joint space 
to the workspace. 

3.3. Advantages and limitations 

The CC kinematics is the most classical and widely used model to 
estimate the 3D shape of the soft manipulator. Some significant ad-
vantages are summarized here. (1) Simple and efficient: Without 
considering the coupling between PMAs and the influence of any force 
on kinematics, the model becomes simple. Also, inverse kinematics can 
be easily obtained by the inverse process of the above method. There are 
only three control variables q1 in the control system, which is conducive 
to the controller design. It has the low-cost computation of about 9 ms, 
which is beneficial to real-time control; (2) Universal and robust: This 
method is suitable for many kinds of soft manipulators, as long as the 
same sensor distribution is observed. More importantly, it can still 
complete effective shape estimation in anywhere, such as seabed and 
narrow gaps [33], instead of being constrained by environment. 

As for limitations, CC kinematics introduces singularities to the nu-
merical calculation of zero curvature section, so it is impossible to 
simulate pure elongation pose. when all elements in qi are equal, the 
numerator and denominator of Eq. (4) are both 0, rendering all 

kinematics model containing ϕi undefined [34]. Fig. 7 shows the nu-
merical solution for pi when li3→li1 = li2 = 100mm. px

i and py
i , 

mentioned by (6), produce unreliable results across the singularity 
neighborhood, because their formulas contain ϕi while pz

i does not. But 
their numerical solutions both have a number of invalid values near the 
singularity. Godage [8] proposed the Taylor expansion approximation 
method to avoid singularities. Although it has strong numerical stability, 
it needs 11 order Taylor expansion for each element of HTM, and the 
computation is intensive. 

Moreover, since CC kinematics only considers the distance constraint 
between PMAs and ignores the fact that they are also strictly mechani-
cally coupled in position and orientation, as well as the overly high 
aspect ratio design for prototypes, almost all prototypes deviate from the 
CC deformation and twists into complex 3D curves, especially in the case 
of large deformation. Some experimental studies based on RSES are 
completed to explain this limitation further. We select three represen-
tative poses as given in Fig. 8. 

Due to the slight deformation of pose 1, the prototype is still in the 
shape of constant curvature, and the yellow curve almost coincides with 
the red curve. The relative simulation result computed by RSES is 
strongly matched with the prototype in Fig. 8a. When the deformation of 
the prototype continues to increase, the red curve deviates from the 
yellow curve in pose 2, and the simulation results can approximate the 
shape of the prototype (see Fig. 8b). It follows that the prototype has 
formed slight 3D torsion at this time, which RSES cannot express. As 
seen in Fig. 8c, the prototype with great deformation produces a large 
3D torsion, resulting in the yellow curve far away from the red curve. 
The shape difference of the simulation is obviously visible for pose 3, so 
the RSES results are no longer of the reference value. 

The RSES results for the multi-segment manipulator are presented in 
our previous work [35]. We believe that the error caused by the constant 
curvature model accumulates as the number of segments increases. In 
brief, there is a clear need for a better method to recognize the shape of 
the soft manipulator. 

4. ASES based on vision 

In this section, ASES based on stereo vision is raised without any 
mathematical model. Contour extraction, centerline clustering, and 3D 
reconstruction are introduced. Finally, some experiments and simula-
tions are also given to analyze the advantages and limitations of this 
method. 

4.1. Contour extraction: image preprocessing 

The purpose of image preprocessing is to segment the manipulator 
data from the image data we captured. The single white is selected as the 
experimental background to easily locate the manipulator. The specific 
process is as follows. 

Firstly, the camera calibration is performed by the factory parame-
ters provided in ZED-API, and distortion-free images with a resolution of 
1280 × 720 are acquired. Secondly, a Gaussian filter is used to suppress 
the noise of the acquired images. We convert the denoised images to 
HSV and then perform mask processing to get the binary images, where 
prototype’s color is set as a threshold. In addition, morphological filter is 
used to remove isolated pixels, resulting in a smoother edge. Finally, we 
wish to extract the optimal encompassing contour about the manipu-
lator for real-time design. In this work, the Canny edge detection algo-
rithm, supported by OpenCV, is provided for contour extraction to get a 
set of pixels points almost completely along the edge of the manipulator. 
The image preprocessing result is shown in Fig. 9 (take the left image as 
an example). 

Fig. 6. The multi-section model.  

Fig. 7. The numerical solution of pi for l3 ± 10− 5.  
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4.2. Clustering: SOM algorithm 

Because the soft manipulator is a uniform and symmetrical tubular 
object, the centerline as the backbone can well reflect its spatial shape. 
SOM algorithm is adopted to identify the centerline from the contour of 
the manipulator in the image plane. SOM neural network is composed of 
the input layer and output layer only, as shown in Fig. 10. 

The number of input neurons a corresponds to the dimension of the 
input sample. Thanks to the input of SOM is the contour data of the 
manipulator.. here, a = 2. Where h is the number of contour data and.. is 
the 2D coordinates of each contour data. As for output neurons, it 

represents the center points.. formed by clustering, where b is the ex-
pected number of center points and Wk ∈ ℝ2 means the 2D coordinates 
of each center point. The training process of the SOM algorithm can be 
summarized into the following steps.  

(1) Initialize parameters: Initialize W, and set the neighborhood 
radius S, initial learning rate α(0) and the training number λ.  

(2) Find the winning neurons: Randomly select an input mr and 
calculate its similarity with each output Wk, expressed by 
Euclidean distance. The output neuron with the smallest 

Fig. 8. The RSES results for three poses compared to the experimental results. The yellow curve printed on the image is the 2D CC shape of the current attitude, and 
the red one is the real 2D shape depicted along the gap between PMAs. For a more realistic display, the centerline is substituted by the tube to simulate the 3D shape 
of the soft manipulator. (a) Pose 1. (b) Pose 2. (c) Pose 3. 
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Euclidean distance is recorded as the winner neuron k∗. The 
equation is defined: 

k∗ = arg min
k∈[1,b]

(‖mr − Wk‖)

= arg min
k∈[1,b]

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(mr − Wk)
T
(mr − Wk)

√ ) (11)    

(3) Design winning neighborhood: the winning neighborhood 
Sk∗ (t), with k∗ as the center and S as the radius, decreases grad-
ually with time t.  

(4) Update weight: The output neuron updates the weight based on 
the gradient descent method in Sk∗ (t). The update rate is satisfied: 

Wk(t+ 1) = Wk(t)+ η(δ)α(t)[mr − Wk(t)], k ∈ Sk∗ (t) (12)  

where the neighborhood function η(δ) meets that the farther the 
topological distance δ from.. is, the smaller it will be, usually 

represented by Gaussian function. α(t) often uses α(0)/(1+t/λ) to 
indicate that it decreases monotonically with t.  

(5) Judge termination: Check whether the current training number 
reaches λ. If not, increase the training number by 1, return to step 
(2), continue training until the λ is reached, and output Wk. 

On account of the ordering guarantee property of SOM algorithm, 
WL

k and WR
k , from the left and right images separately, can be auto-

matically matched to correspondence point without any sorting algo-
rithm. 

4.3. 3D construction: triangulation 

It is necessary to establish a projection relationship between the 3D 
space where the manipulator resides and the image plane we have ac-
quired. In view of the special structure that left and right cameras of ZED 
are strictly parallel, the triangulation method is employed to calculate 
the disparity of the point on the left and right image plane through the 
geometric model, so as to obtain its depth, as shown in Fig. 11. The 
distance between the optical centers of the left OL and right cameras OR 

is the baseline length Tx, and the focal length f satisfies f = fL = fR. The 
left cL − uLvL and right pixel coordinate system cR − uRvR is set up as 
follows. 

WL
k and WR

k are the projections of a backbone Qk = [Qx
k,Q

y
k,Q

z
k]

T
∈

ℝ3 on the left and right image planes respectively, and their x co-
ordinates are noted as xL

k and xR
k . According to the geometric principle of 

spatial triangle similarity, the depth Qz
k is solved: 

Qz
k = fTx/τk (13) 

Fig. 9. Image preprocessing results.  

Fig. 10. SOM neural network structure.  

Fig. 11. Triangulation model. (a) Imaging schematic diagram. (b) Geometric diagram.  
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where τk = xL
k − xR

k is the disparity. On the basis of the depth model, the 
dimension information of the X and Y axes can be calculated by the same 
way 

Qx
k = xL

k Qz
k

/
f (14)  

Qy
k = yL

k Qz
k

/
f (15) 

The backbone Q = [Q1,…,Qb] ∈ ℝ3b is generated iteratively in turn. 
The left camera coordinate {OL − XLYLZL} is the default coordinate here. 
For subsequent research, the coordinate definition needs to be consistent 
with the kinematics method (see Section 3.2). The coordinate trans-
formation is completed below 
[

Q̂
1

]

= TL− g

[
Q
1

]

(16)  

where TL− g ∈ SE(3) is HTM from the left camera coordinate 
{OL − XLYLZL} to the global coordinate {O1 − X1Y1Z1}, determined by 
Ordinary Least Squares with multiple known markers. Ultimately, the 
set of Q̂ = [Q̂1,…, Q̂b] ∈ ℝ3b is the final result of ASES. 

4.4. Advantages and limitations 

Compared with the other shape estimation method that requires 
modeling, machine vision is a low-cost, high-precision and non-contact 
measurement. To analyze the performance of the ASES, various exper-
iments were performed on the soft manipulator platform. The pressure 
of the three PMAs is adjusted to actuate the prototype into the variable 
curvature poses. As shown in Fig. 12a, we selected four typical poses and 
ran ASES to sense their 3D shape. The results of contour extraction and 
SOM are shown in Fig. 12b. The parameters involved in the SOM algo-
rithm are set in the Table 1 to ensure well clustering results. 

The final 3D reconstruction results are simulated in Fig. 12c, and 
each pose is distinguished by different symbols. The improved cubic 
spline fitting is applied to better express the 3D shape in the form of a 
continuum through each data point. It is observed that the simulation 
results of ASES agree very well with the experimental results, which 
provides a great solution to inaccurate shape estimation under variable 
curvature poses. 

Remark The measurement error from ZED is not considered. 
The limitations of vision are apparent. It has strict environmental 

requirements, such as lighting quality and background complexity, 
which directly affect the effectiveness of the detection. Therefore, the 
vision method is only applicable to the indoor experimental environ-
ment where the conditions can be arranged artificially. As seen in 
Fig. 12a, the light is supplemented throughout the above experiment to 
guarantee the correct contour extraction. For comparison, the same 
experiments were conducted under poor light. As given in Fig. 13a, the 
bad contour leads to the subsequent center point clustering being no 
longer effective. 

Not only that, vision method will also lead to failure when the pro-
totype appears self-occlusion, which greatly limits the application. In 
Fig. 13b, the prototype is bent backward so that the contour cannot be 
correctly identified. At this time, ASES should not be utilized. 

5. DNN approach and experimental verification 

In this section, a deep learning-based approach is implemented to 
explore the highly non-linear complex relationships between RSES and 
ASES. Several experiments have been done to evaluate the performance. 

5.1. DNN based approach 

As stated above, RSES and ASES have their own advantages. 
Assuming that the results of ASES can be obtained by only using RSES, 

the advantages of the two estimation methods are perfectly combined. In 
other words, it comes down to finding the highly non-linear mapping 
between q1 ∈ ℝ3 and Q̂ ∈ ℝ3×7 (take unit-section manipulator as an 
example). However, most of the non-linear mappings are hard to 
describe with mathematical formulas. To settle this circumstance, DNN, 
as a general approximator, is a practical modeling technique to provide 
an approximate solution for g(.) by training a large number of input/ 
output data. It can be written concisely a 

Q̃ = g(q1) (17)  

where Q̃ ∈ ℝ3×7 is infinitely close to.. in theory. The architecture of DNN 
adopted in this work is displayed in Fig. 14. It takes {l11, l12, l13} (each 
element of q1) as input neuron and serves each element of Q̂ as the 
output neuron. Multiple hidden layers are composed of full connection 
layers, and each node possesses an activation function to add nonline-
arity. The forward-propagation algorithm can be summarized as 

Cn = φ(VnUn− 1 +Bn) (18)  

where Bn is expressed as the bias vector for layer n, Vn is the weighting 
matrix connecting layer n − 1 to layer n, then the network parameter is 
set asβ = {V,B}. Un− 1 and Cn are the output vector for layer n − 1 and 
layer n separately. Additionally, φ(.) represents the activation function. 

The entire learning process of DNN can be divided into three main 
steps:  

(1) Dataset collection: DNN is regarded as a data-driven 
modeling method, so the enormous dataset allows the trained 

model to have better accuracy. In this work, the dataset is 
generated on our experiment platform. We have provided varying 
pressure for three PMAs to explore the real workspace of the soft 
manipulator. The DAC is programmed to control PC ∈ ℝ3 to 
change discretely from 0 bar to 3 bar with a fixed step of 0.1 bar. 
For each actuation, Q̂ is figured out to save as an output sample 
by running ASES. Meanwhile, The RSES measures q1 by cable 
encoders as an input sample. In this manner, a group of input/ 
output samples is memorized. The above sampling process lasted 
approximately 35 h and resulted in a total of Ntotal = (31)3 =

29791 samples. Some samples need to be removed (about 827) 
when a self-occlusion occurs on the manipulator and causes the 
ASES to fail. For the integrity of the dataset, the artificial samples 
can be created by rotating around the z-axis to supplement 
removed samples on account of the radial symmetrical distribu-
tion of PMAs. The final dataset is randomly distributed into three 
parts: training set (70%), test set (15%) and validation set (15%).  

(2) Network training: The purpose of network training is to search 
the ideal network parameters β∗ to minimize the Mean Square 
Error (MSE) between Q̃ and Q̂ where is from the dataset. It can be 
concluded as: 

β∗ = arg min
β

G

(

Q̂, Q̃

)

= arg min
β

1
NtrNout

(
∑Ntr

i=1

⃦
⃦
⃦Q
⌢(i)

− gβ

(
q(i)

1

)⃦
⃦
⃦

2

2
+ γ‖β‖2

2

) (19)  

where ‖.‖2is noted as L2 norm.. is the number of the output neurons, and 
Ntr = 20854 is the number of training samples. G(.) implies the MSE loss 
function we choose. It is worth noting that L2 regularization is added to 
the loss function as a penalty term and decay the magnitude of β by 
means of adjusting γ, which can effectively reduce the complexity of the 
DNN model and prevent overfitting. Here, γ = 0.01. 

Referring to the MSE, the Adam optimizer with momentum term is 
operated to dynamically update.. through backpropagation until MSE 
converges to the minimum value. In each training epoch, the training set 
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Fig. 12. The ASES results for four typical poses. (a) Experiment results with four typical poses of the soft manipulator. (b) Simulation results with contour extraction 
and SOM. (c) Simulation results with 3D shape estimation. 
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follows the above training process in batches, while the validation set is 
only performed the forward propagation with fixed β, and takes MSE as 
the criterion to judge whether the current network structure and 
hyperparameter are reasonable, which improves the generalization of 
the model. The topological structure and hyperparameter configuration 
of final DNN we chosen is given in Table 2 (maybe not the best, but 
enough). 

Fig. 15 shows the performance of the loss function on the training set 
and the validation set for each training epoch. Obviously, the loss 
function dropped significantly within the first 20 epochs of training, 
which explains that β at this time are rapidly moving to β∗ by a large 
margin. When the training reaches about 500 epochs, the loss function 
has converged steadily and has no further downward trend. Therefore, 
the training would cease, and the DNN model is saved.  

(3) Performance evaluation: The performance of the trained DNN 
on the test set is further evaluated using Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE) as the new error 
criteria. MAE can more directly reflect the real error between Q̃ 
and.., and RMSE is more sensitive to the dispersion of samples. As 
listed in Table 3, we developed the error analysis for the test set in 
the dimensions of x, y and z (all samples in mm). In the two error 
criteria, the error on the z-axis is slightly larger than that of the 
other two axes. 

Nevertheless, sometimes the overall error evaluation of data cannot 
investigate the stability and universality of the DNN for any case thor-
oughly. As a consequence, we made an in-depth error analysis for each 
sample. As shown in Fig. 16, the three frequency histograms for the error 

on the test set deliver the error distribution for each sample on the x, y 
and z axes. It can be observed that the error on the three axes does not 
exceed ± 10 mm, and the proportion of samples with error within 
± 2.5 mm on the x, y, and z axes reach 82%, 81.4% and 73.75% of the 
total test set, individually. The number of samples with an error of about 
± 10 mm only accounts for 0.11%, 0.18% and 0.15% of the test set. It 

Table 1 
SOM algorithm parameter setting.  

S α(0) λ b  

3  0.01  15  7  

Fig. 13. Experimental results in some bad cases. The contours and center points 
marked in green are printed to the image. (a) poor light conditions. (b) 
self-occlusion. 

Fig. 14. The principle of the DNN approach.  

Table 2 
The hyperparameter configuration of final DNN.   

Topological structure Hyperparameter 

Layer 
name 

Composition Layer 
name 

Composition Item Setting 

Input 
layer 1 

Input Hidden 
layer 5 

Linear layer Learning 
rate 

0.001 
[3,15] [15,45] 

+RELU 
Hidden 

layer 2 
Linear layer 
[15] 

Hidden 
layer 6 

Linear layer Optimizer Adam 

+RELU [45] 
+RELU 

Hidden 
layer 3 

Linear layer  Hidden 
layer 7 

Linear layer Epoch 500 

[15] [45] 
+RELU +RELU 

Hidden 
layer 4 

Linear layer Output 
layer 8 

Output Batch size 128 
[15] [21,45] 
+RELU  

Fig. 15. The performance of the loss function on the training set and the 
validation set. 

Table 3 
Error evaluation of trained DNN on the test set.  

Axis MAE RMSE 

x-axis  1.7601  2.5563 
y-axis  1.8049  2.5850 
z-axis  2.0677  2.6141  
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implies that although the performance on the z-axis is slightly inferior to 
the other two, the error distributions of the three dimensions are both 
similar to the Gaussian distribution, which is what we want to get. More 
concretely, we carried out the RMSE of each sample on the test set. 
Among the 4463 samples, the RMSE of only 60 samples is approximately 
8. As described by the yellow line in Fig. 16, the average RMSE for all 
samples is 2.302. 

To sum up, the trained DNN model has strong robustness for most 
samples on the test set and reflects satisfactory generalization perfor-
mance. In Fig. 17, the samples with the minimum, average and 
maximum RMSE and the corresponding learning results are given to 
visualize the performance of this learning model for 3D shape estima-
tion. In the view of the displayed performance, the learning result with 
maximum RMSE on the test set still falls in an acceptable range. 

5.2. Experimental verification 

In addition to the verification on the test set, a real-time bending 
deformation experiment was also conducted to prove the dynamic per-
formance of DNN. The continuous bending was generated by pressure 
variation for PMA2 from 1 bar to 2.5 bar with a fixed step of 0.05 bar, 
and RSES and ASES were operated simultaneously during deformation. 
In order to coordinate the synchronization of data obtained by the two 
detection systems, we reduced the sampling frequency of STM32 for q1 
by the delay function to match the frame of the camera. The results of 
contour extraction with equal time intervals during motion by ASES are 
shown in Fig. 18a. The red contours indicate the starting pose and the 
final pose. The SOM results with the corresponding pose are shown in 
Fig. 18b. We also give the results of ASES and DNN for the 3D shape 
estimation of the soft manipulator (see Fig. 18c). The prediction effect of 
DNN seems to be great among these poses. 

For simplicity, we only exhibited the trajectory of the end-actuator 
instead of the entire shape to analyze the dynamic process. The whole 
motion process lasted for 30 s, and the three methods all produced 105 
trajectory points, as shown in Fig. 18d. As you can see, Q̃7 are able to 
continuously approach to the Q̂7 in a high accuracy, while the results of 
RSES have a large deviation in the latter half of the motion process. 
Some 3D shapes estimated by RSES during motion are also plotted here. 
The change in q1 is recorded in Fig. 18e. 

Next, error analysis is performed to quantify the accuracy of the two 
methods (take the results of ASES as the standard value). In Fig. 19, the 
error of DNN in each dimension has been maintained at a low level 
throughout the movement, but the error of RSES is satisfactory only in 
the first 5 s. It can be found that the RSES error on the y-axis begins to 
increase after about 15 s, because the prototype deforms greatly and 
begins to produce 3D torsion, consistent with the deviation of the RSES 
trajectory in Fig. 18d. 

The RMSE for the two methods in each dimension is listed in Table 4. 
The DNN solution has achieved good performance, which confirms its 
effectiveness and accuracy even in real-time experiments. On the con-
trary, RSES is less accurate, resulting from the inherent constant cur-
vature modeling assumption. Specifically, the constant curvature model 
considers the three cables to be coplanar with the centerline and cannot 
capture some indescribable properties, for example, hysteresis, visco-
elasticity and friction between cable and nylon mesh. The prototype is 
made of non-linear flexible materials without the characteristics of CC 
deformation, which also inherits the memory effect and nonstationary 
behavior caused by rubber, and the torsional effect is also ignored in the 
modeling process. Therefore, RSES cannot meet the needs of high- 
precision shape estimation in most cases. 

Some attempts have also been made to explore different kinds of 
neural networks in solving this work. Two common neural networks, 

Fig. 16. The detailed error distribution on the test set. The red lines in the three histograms are computed by spline interpolation with the frequency of each 
error interval. 
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Radial Basis Function (RBF) and Multilayer Perceptron (MLP) neural 
network with two hidden layers, are selected. Use the same dataset and 
epochs to train RBF and MLP neural network to verify if they can also fit 
the complex nonlinear relationship between RSES and ASES equally 
well. The training process is shown in Fig. 20. 

There is a convergence trend in the overall training process of the 
MLP neural network, but obviously, 500 epochs are not enough for it, 
and the loss error is relatively large compared to DNN. This is because 
the number of hidden neurons in MLP neural networks is small so that 
the ability to fit complex functions is limited. However, the loss error of 
the RBF neural network hardly sees a significant decrease, indicating 
that the fitting of this neural network fails, and is not suitable for this 
work. In summary, DNN is more suitable for the research work in this 
paper. We are interested in finding more potential neural network 
structures to further improve the accuracy of our work. 

5.3. Discussions 

It can be concluded that the proposed learning-based approach can 
obtain accurate visual results only by relying on the simplest RSES, 
which is undoubtedly a better choice among shape estimation frame-
works. Most often, there are inevitably some limitations. (1) To ensure 
the accuracy of DNN, it is necessary to establish a large number of 
datasets to cover all possible situations, which means that tens of 
thousands of offline experiments are carried out at high frequency. The 
process of data collection has a high time cost and is also regarded as a 
test for the durability of the prototype. If extended to a multi-segment 
manipulator, the size of the dataset grows exponentially with the 
amount of control variable, which becomes difficult to build by exper-
iment. Furthermore, the data collected by the experimental method may 
be unreliable or biased due to the nonlinearity of the soft manipulator. 
(2) DNN contains many adjustable hyperparameters that are artificially 

set, which is a long phase to find a suitable set of hyperparameters, 
because each change of hyperparameters requires restarting the training 
process, while DNN can only guarantee good convergence in the local 
optimal area, rather than the global optimum. (3) This work establishes 
a shape estimation model for the prototype in a free state during the 
experiment, but in practical applications for the restricted environment, 
it often interacts with the environment or requires additional external 
loads, resulting in a decrease in the accuracy of the trained model. Even 
in the free state, flexible materials generally deform slightly after long- 
term use, which leads to a slow decrease in the accuracy of the trained 
DNN model. If the same new prototype is replaced, the database will also 
be re-established and re-trained. This is because the prototypes pro-
duced by the manual process have certain differences in each 
production. 

In the future work, we intend to use the hybrid learning method to 
establish a simulation dataset through the finite element method, so as 
to free the prototype from the training process and facilitate the shape 
estimation of the multi-segment soft manipulator. And more complex 
and realistic environments will be introduced for experimental 
evaluation. 

6. Conclusion 

In this work, a DNN approach is proposed to accurately estimate the 
3D shape of the soft manipulator in real time, which integrates tradi-
tional sensing, machine vision, and deep learning. The CC kinematics- 
based RSES has the singularity and the limitation of CC, which can 
only achieve the effect of rough shape estimation. ASES based on vision 
can accurately estimate the 3D shape of the soft manipulator, whereas 
the extremely strict requirements for the environment and self-occlusion 
limit its application. Thus, a novel learning-based framework using DNN 
is adopted to fitting the non-linear mapping between ASES and RSES. 

Fig. 17. The DNN results and the corresponding vision results with the minimum, average and maximum RMSE on the test set.  
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The error evaluation for the trained DNN is conducted on the test set. 
The results show that the RMSE of the x, y and z axes are within 2.7, and 
the error distribution is similar to the Gaussian distribution. A real-time 

bending deformation experiment is also performed to suggest the DNN 
approach can accurately measure 3D shape for soft manipulator via 
length information in real time, and the RMSE is always maintained 
within 3. 
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Fig. 18. The results of bending deformation experiments. (a) Contour extraction. (b) Centerline clustering. (c) The results of ASEM and DNN. (d) Trajectory 
generated by three methods. (e) The change trend of q1. 

Fig. 19. Absolute error curves of two methods in x, y, z axes.  

Table 4 
RMSE for two methods in each dimension.  

Axis RSES DNN 

x  10.8861  2.2124 
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z  6.5560  2.2998  
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