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Adaptive Shape Servoing of Elastic Rods using
Parameterized Regression Features and

Auto-Tuning Motion Controls
Jiaming Qi∗, Wanyu Ma∗, David Navarro-Alarcon, Senior Member, IEEE, Han Gao and Guangfu Ma

Abstract—In this paper, we present a new vision-based method
to control the shape of elastic rods with robot manipulators.
Our new method computes parameterized regression features
from online sensor measurements that enable to automatically
quantify the object’s configuration and establish an explicit
shape servo-loop. To automatically deform the rod into a desired
shape, our adaptive controller iteratively estimates the differen-
tial transformation between the robot’s motion and the relative
shape changes; This valuable capability allows to effectively
manipulate objects with unknown mechanical models. An auto-
tuning algorithm is introduced to adjust the robot’s shaping
motion in real-time based on optimal performance criteria. To
validate the proposed theory, we present a detailed numerical
and experimental study with vision-guided robotic manipulators.

Index Terms—Robotics, visual servoing, deformable objects,
sensor-based control, model estimation.

I. INTRODUCTION

THE manipulation of deformable objects is currently an
open (and hot) research problem in robotics [1] that has

attracted many researchers due to its great applicability in
many areas, e.g. manipulating fabrics [2], shaping of food
materials [3], assembling soft components [4], manipulating
cables [5], interacting with tissues [6], etc. Note that physical
interactions between a robot and a deformable object will
inevitably alter the object’s shape. The feedback control of
these additional object degrees-of-freedom (DOF) is referred
to in the literature as shape servoing [7], a frontier problem
that presents three main challenges: (i) The efficient feedback
characterization of the object’s shape (which has infinite
number of DOF to be controlled by a robot with limited
manipulation directions); (ii) The computation of a motion-
deformation model for control (which depends on the—
typically unknown—mechanical properties of the object); (iii)
The online adjustment of the robot’s motion during the soft
object manipulation task (note that these objects might be
delicate and easy to damage).
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For shape servoing tasks, an excellent feature extraction
algorithm can describe the soft object to the greatest extent
with the least number of feature coordinates. The most widely
used image features are feature points, centroid points, dis-
tance/angle/curvature features, and other artificially marked
points [8]. However, as the above are local features, and
hard to describe the overall geometric information of soft
objects. Thus, the development of global features present
an advantage in this problem. In [9], image moments were
used to characterize the object’s contour, but its real-time
performance was limited due to a large amount of calculations.
In [10], Principal Component Analysis was used to project
raw Fast Point Feature Histograms into a new space with
higher variance and a lower dimension. A catenary-based
feature descriptor was developed for tethered wheeled robots
and underwater vehicles in [11], [12]; However, this approach
is only applicable to very specific shapes, hence, cannot
be used for complex contours. Recently, a method based
on Fourier coefficients was developed in [13], [14]; This
approach can effectively compute a low-dimension feature
vector to represent the shape of complex objects. Bézier curves
and Non-Uniform Rational Basis Splines (NURBS) are an
interesting option to describe complex contours, however, they
have not been thoroughly exploited in the literature to establish
an explicit shape servo-loop. Other types of shape feature
representations rely on machine learning, e.g. Nair combined
learning and visual feedback to manipulate ropes in [15].
Although learning-based approaches have good adaptability,
they require large and “rich enough” data sets to generalize to
diffvnerent situations (which is difficult to guarantee in many
applications). Designing a computationally efficient feature
extraction algorithm that provides a reliable representation
for controller design is an important problem in soft object
manipulation.

To execute shape servoing tasks, a controller requires a
model (e.g. a Jacobian matrix) that describes the relationship
between robot motions and feedback deformations. In [16], the
authors used parameter linearization and least-squares methods
to compute the deformation Jacobian matrix. Then, to improve
real-time performance, an online estimation technique and its
convergence proof were developed in [17]. However, both
methods depend on the selection of the regression matrix
and need a prior-known structure. The Broyden method was
used to online estimate the Jacobian matrix in [18] without
a known structure. In [19], the authors combined dynamic
recursive least square with online estimation; Although these
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methods have a small amount of calculation and are easy to
implement, they are prone to enter local minima. Kalman Filter
(KF) has an excellent performance in estimating unknown
variables using a series of measurements observed over time
in the presence of noise and uncertainty. Thus, KF is a
good option for online estimating the sensorimotor relations
in our soft object manipulation problem. For example, in
[20] a state-space model was established using the Jacobian
matrix elements as the system state and used KF to observe
its unknown values. With standard Kalman filters, the noise
covariance matrix is often a constant matrix, for solving this
limitation, the authors in [21] proposed a fuzzy adaptive KF to
deal with a time-varying covariance matrix. In our soft object
manipulation problem, a good Jacobian matrix estimation
algorithm is necessary to properly “steer” the object towards
a desired target shape.

Although model-free shape control (as formulated in [16]) is
known for its simple structure and robustness to uncertainties,
these controllers generally use a constant feedback gain (which
limits the types of dynamic responses they can achieve).
When the performance requirements change (e.g. deforming
materials with different stiffness), a fixed gain may produce
oscillations, cause the system to lose stability or even damage
the manipulated object. Therefore, it is important to design a
dynamic parameter tuning algorithm for shape servoing tasks,
such that it can adapt to various performance requirements.

Based on the limitations of the above mentioned works,
in this paper, we propose a new solution with the following
original contributions:

1) We present new feedback feature vectors (constructed
with the coefficients of Bézier and NURBS) to effi-
ciently represent elastic rods.

2) We propose a new adaptive deformation controller with
KF-based estimators and online parameter optimization.

3) We report detailed simulations and experimental results
to validate the proposed method.

To the best of authors knowledge, this is the first time that
a shape servo-controller uses Bézier/NURBS to establish an
explicit shape servo-loop. These features were used in [22] but
only to project the object’s contour into the image plane, which
largely differs from our feedback representation approach.

The rest of this paper is organized as follows: Section II
presents the preliminaries; Section III describes the methods;
Section IV and Section V presents the results; Section VI gives
final conclusions.

II. PRELIMINARIES

Notation. Throughout this paper we use very standard nota-
tion. Column vectors are denoted with bold small letters v and
matrices with bold capital letters M. Time evolving variables
are represented as mk, where the subscript ∗k denotes the
discrete time instant. En is an n× n identity matrix.

Our aim in this work is to solve the automatic shape control
of elastic rods with visual servoing. We denote the vector of
robot motion by rk ∈ Rq . To derive our new method, let us
first consider the following conditions:
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Fig. 1. Representation of the cable manipulation case of study, where a
vision sensor continuously measures the feature vector s of the cable, which
should be accurately deformed into target feature s∗ within the controller.
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Fig. 2. The block diagram showing the overall workflow of the system.

• The shape of the rod is measured with a fixed camera
in an eye-to-hand configuration (depicted in Fig. 1). We
denote the 2D image contour as:

c̄ = [cᵀ1 , . . . , c
ᵀ
N ]

ᵀ ∈ R2N ci = [ui, vi]
ᵀ ∈ R2 (1)

where, N is the number of the contour points, ci denotes
the ith (i = 1, · · · , N) point of the contour in the image,
ui and vi are the coordinates under the image frame.

• During the manipulation task, the rod is rigidly grasped
by the robot and remains all the time within the observ-
able range of the camera, and no occlusion occurs.

• The robot’s motion is commanded with classical kine-
matic controls ∆rk [23] that render stiff behaviours and
satisfy the incremental position motions rk = rk−1 +
∆rk.

• The rod is manipulated at low speed such that its shape
is determined by the equilibrium of its potential/elastic
energy terms only.

Problem Statement. Design a vision-based adaptive control
scheme to automatically deform an elastic rod into a desired
2D image shape, without requiring any knowledge of the
object’s mechanical model.

III. METHODS

Fig. 2 shows the block diagram of the overall manipulation
task. The centerline data extraction represents the image
processing pipeline, which will be given in Section V-A.
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Fig. 3. The schematic diagrams of the Bézier and NURBS curve.

A. Feedback Shape Parameters

The naı̈ve approach to shape servoing is to synthesise a
regulator that attempts to drive the full coordinates of c̄ into
a desired 2D contour. The main problem with this approach
is that the raw vector c̄ is not an efficient signal for real-time
control as its dimension very large. Therefore, it is necessary
to design an algorithm that computes a reduced dimension
feature vector, which can be used for feedback control. In this
paper, we fit the feedback signal to a continuous curve f(ρ)
that describes the 2D contour, where ρ is a variable constructed
with sensor data which represents the normalized arc-length
(0 ≤ ρ ≤ 1). Then, ci = f(ρi), where ρi is the arc-length
between the start point c1 and the point ci (see Fig. 1), and
ρ1 = 0, ρN = 1.

The idea behind the proposed method proposed is to com-
pute the coefficients of a linearly parametrized regression
model of the 2D contour, and use it as a quasi-measurement
of the object’s shape. Such model has the general form:

c̄ = Ḡ(ρ) · s (2)

where Ḡ is a regression-like matrix with a known structure,
and s is a vector of unknown parameters (which in our
formulation represents the shape feature vector). We illustrate
this principle with four representative examples: polynomial,
Bézier, NURBS, and Fourier. The schematic diagrams of the
Bézier and NURBS curves are shown in Fig. 3.
• Polynomial Parameterization. Given a variable parameter
ρ, the general formula is to approximate a curve is:

f (ρ) =

n∑
j=0

ρjpj (3)

where the positive number n ∈ N is the order of the
polynomial, and pj = [aj , bj ]

ᵀ are the shape parameters
of the 2D contour. Polynomial regression can easily
represent smooth regular shapes, however, if the order
n is selected too large, it may produce overfitting of the
curve.

• Bézier Parameterization. As shown in Fig.3, Bézier curve
approximates the curve with a polynomial expression
using control points. n+ 1 control points can determine
a n-degree Bézier curve which is described as follows:

f (ρ) =

n∑
j=0

Bj,n (ρ)pj ,

Bj,n (ρ) =
n!

j! (n− j)!
(1− ρ)

n−j
ρj , (4)

where pj = [aj , bj ]
ᵀ are control points as well as the

shape parameters of the 2D contour. Bézier curve has
a first-order derivability. It guarantees that the fitting
will advance smoothly with the control points without
fluctuations, thus, it can represent complex shapes. Yet,
note that when many control points are used, it will
increase the degree of Bézier curve and the computational
burden.

• NURBS Parameterization. It has local shape descrip-
tion properties, thus, the number of control points is
independent from the degree of curves. This model can
describe complex curves more accurately and efficiently
than polynomial and Bézier. The definition of a mth-
degree NURBS curve [24] is:

f (ρ) =

∑n
j=0Nj,m (ρ)ωjpj∑n
j=0Nj,m (ρ)ωj

(5)

where n is the approximation degree of the NURBS,
pj = [aj , bj ]

ᵀ are control points, ωj are the weights,
Nj,m are m-degree B-spline basis functions. We set

Rj,m (ρ) =
Nj,m (ρ)ωj∑n
l=0Nl,m (ρ)ωl

(6)

to rewrite Eq. (5) in the form

f (ρ) =

n∑
j=0

Rj,m (ρ)pj (7)

Along this work, we set m = n such that the NURBS
reduces to a rational Bézier curve and Nj,m(ρ) reduces
to Bj,m(ρ) in (4).

• Fourier Parametrization Besides the above three cases,
Fourier series (as presented in [13]) are also a type
of regression equation. A Fourier curve of degree n is
described as follows:

f (ρ) =

[
a0
c0

]
+

n∑
j=1

[
aj bj
cj dj

] [
cos (jρ)
sin (jρ)

]
(8)

where [a0, c0]
ᵀ and pj = [aj , bj , cj , dj ]

ᵀ are components
of frequencies as well as the shape parameters of the 2D
contour.

Parameterized Regression. We can rewrite (3), (4), (7) and
(8) into the linear parameterization form f = G(ρ)s, with the
regression matrix G and feature vector s defined by:

• For polynomial:

Fj = diag(ρj , ρj) ∈ R2×2

G = [F0, · · · ,Fn] ∈ R2×2(n+1)

s = [pᵀ
0 , · · · ,pᵀ

n]
ᵀ ∈ R2(n+1) (9)

• For Bézier curve:

Fj = diag(Bj,n (ρ) , Bj,n (ρ)) ∈ R2×2

G = [F0, · · · ,Fn] ∈ R2×2(n+1)

s = [pᵀ
0 , · · · ,pᵀ

n]
ᵀ ∈ R2(n+1) (10)
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• For NURBS:

Fj = diag(Rj,n (ρ) , Rj,n (ρ)) ∈ R2×2

G = [F0, · · · ,Fn] ∈ R2×2(n+1)

s = [pᵀ
0 , · · · ,pᵀ

n]
ᵀ ∈ R2(n+1) (11)

• For Fourier:

Fj =

[
cos (jρ) sin (jρ) 0 0

0 0 cos (jρ) sin (jρ)

]
∈ R2×4

G = [E2,F1, · · · ,Fn] ∈ R2×(4n+2)

s = [a0, c0,p
ᵀ
1 , · · · ,pᵀ

n]
ᵀ ∈ R(4n+2) (12)

By using N sample points combined with the different
regression equations (9), (10), (11), and (12), we can get the
same long structures presented in (2):

c̄ = [c(ρ1)
ᵀ
, · · · , c(ρN )

ᵀ
]
ᵀ

Ḡ = [G(ρ1)
ᵀ
, . . . ,G(ρN )

ᵀ
]
ᵀ

Thus, the feature vector s is computed from sensor feedback
at every iteration as:

s = G · c̄ for G =
(
ḠᵀḠ

)−1
Ḡᵀ (13)

To invert ḠᵀḠ, a sufficient number N of data points must be
used such that 2N > 2(n + 1) (or 2N > 4(n + 2) for the
Fourier case).

Remark 1. Although this paper only gives four forms of curve
parametrization, there are many other geometric expressions
(e.g. B-spline and rational approximation) that can be linearly
parameterized as (2).

B. Approximation of the Local Deformation Model

Since we consider regular (i.e. mechanically well-behaved)
elastic objects, it is reasonable to assume that small robot
motions ∆rk = rk − rk−1 ∈ Rq will produce small changes
∆c̄ in the observed 2D contour. We locally model this situ-
ation (around the current operating point) with the following
expression:

∆c̄k = Dk ·∆rk (14)

where we introduce the matrix Dk to model the local defor-
mation properties of the elastic object undergoing quasi-static
manipulation by the robot. By combining (14) with (13) we
obtain the motion model:

∆sk = GDk ·∆rk = Jk ·∆rk (15)

where ∆sk = sk − sk−1 ∈ Rp denotes the features’ changes,
and the matrix Jk = GDk ∈ Rp×q represents a Jacobian-
like matrix that transforms robot motions into shape changes,
and which cannot be analytically computed as the deformation
properties of the object are unknown. Instead of identifying the
full mechanical model, in this paper we design an algorithm
that computes local approximations of Jk in real-time. For
estimating the Jacobian-like matrix, we use two KFs, LKF and
UKF, which excellent real-time performance and are robust to
external disturbances [25]. Throughout this note, we assume
that Jk is full column rank during the manipulation task (a

condition that is easy to satisfy in practice as the dimension
of s is much larger than r). Consider the discrete form of (15)

sk = sk−1 + Jk ·∆rk (16)

with state xk = [∂s1/∂r, . . . , ∂sp/∂r]
ᵀ ∈ Rpq , and ∂si/∂r =

[∂si/∂r1, . . . , ∂si/∂rq] ∈ R1×q is the ith row of the Jacobian
Jk, the discrete system (16) can be transformed into the linear
stochastic system with no control input:

xk = xk−1 + ηk

yk = Mk · xk + νk (17)

The system output is defined as yk = ∆sk, and let the
noise sequences be zero-mean Gaussian white noise, namely,
process noise ηk ∼ N (0,Ak) and measurement noise νk ∼
N (0,Bk), with variances Ak and Bk respectively. Mk is the
measurement matrix defined by:

Mk = diag

(
∆rᵀk, · · · ,∆rᵀk︸ ︷︷ ︸

p

)
∈ Rp×pq (18)

1) Linear Kalman Filter: LKF is an algorithm that esti-
mates unknown states of a system by observing measurements
and inaccuracies. The algorithm works in a two-step process:
predict and update. With the prediction of the current states
and their uncertainties, once the next measurement is observed,
these prediction are updated using a weighted average. Firstly,
denote the prediction of the state and its variance using x̂−k
and P−k . Denote the update value of the state and its variance
using x̂k and Pk with initialization of x̂0 = E(x0) and
P0 = Var(x0) respectively. For system (17), present LKF as
follows:

Predict: P−k = Pk−1 + Ak−1

Hk = P−k M
ᵀ
k

(
MkP

−
k M

ᵀ
k + Bk

)−1
x̂−k = x̂k−1

Update: Pk = (Epq −HkMk)P−k
x̂k = x̂−k + Hk

(
yk −Mkx̂

−
k

)
(19)

ŷk = Mkx̂k

Once we get x̂k at each step, we update the Jacobian Ĵk.
But, LKF is only suitable for linear systems, when estimating
the nonlinear time-varying Jacobian matrix, it may cause
estimation errors.

2) Unscented Kalman Filter: KF preforms the propagation
of a Gaussian Random Variable (GRV) through the system
dynamics while LKF is not good enough to propagate a GRV
for a nonlinear system [26]. UKF selects a minimal set of
sample points (so called sigma points) of system state x and
guarantees the state distribution is again approximated by a
GRV, using the Unscented Transformation (UT) [27], [28]
which is an approach that maps system state x to sigma
points χ, to fix the large error introduced by the first-order
linearization of the nonlinear system.
Firstly, we rewrite (17) into the nonlinear form:

xk = g(xk−1) + ηk

yk = h(xk) + νk (20)
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Initialize the mean and covariance of the state with x̂0 =
E(x0) and Px,0 = Var(x0) respectively. Define a matrix χ ∈
Rpq×(2pq+1) of 2pq + 1 sigma vectors χi ∈ Rpq:

χ0
k = x̂k

χi
k = x̂k +

(√
(pq + κ)Px,k

)
i

χi+pq
k = x̂k −

(√
(pq + κ)Px,k

)
i

(21)

where i = 1, · · · , pq and (•)i is the ith column of the matrix
which should be decomposed using numerical method such
as SVD and Cholesky decomposition. The coresponding first-
order weights W (m) and second-order weights W (c) are

W
(m)
0 =

κ

pq + κ

W
(c)
0 =

κ

pq + κ
+
(
1− α2 + β

)
W

(m)
i = W

(c)
i =

κ

2 (pq + κ)
, i = 1, · · · , 2pq. (22)

where κ = α2 (pq + λ) − pq is a scaling parameter. α
determines the spread of the sigma points around x̂k−1 which
is usually set 1e−1 ≤ α ≤ 1. λ is a secondeary scaling
parameter, usually set to 0. β is state distribution parameters,
for Guassian distribution, usually set to 2.
The above sigma points in (21) are transformed through the
state equation g(•) and observation equation h(•) of the
system to obtain new sigma points γ:

χk = g
(
χk−1

)
= χk−1

γk = h (χk) = Mkχk (23)

ŷ−k =

2pq∑
i=0

W
(m)
i γi

k

Then, present classical two-step KF frame to the new sigma
points:

Predict: x̂−k =

2pq∑
i=0

W
(m)
i χi

k

P−x,k =

2pq∑
i=0

W
(c)
i

(
χi

k − x̂−k
) (
χi

k − x̂−k
)ᵀ

+ Ak

Update: Py,k =

2pq∑
i=0

W
(c)
i

(
γi
k − ŷ−k

) (
γi
k − ŷ−k

)ᵀ
+ Bk

Pxy,k =

2pq∑
i=0

W
(c)
i

(
χi

k − x̂−k
) (
γi
k − ŷ−k

)ᵀ
K = Pxy,kP

−1
y,k

x̂k = x̂−k + K
(
yk − ŷ−k

)
Px,k = Px,k−1 −KPy,kK

ᵀ (24)

Once we get x̂k at each step, we update the Jacobian Ĵk.

C. Shape Servoing Controller

Let us assume that at the time instant k, the transformation
matrix Ĵk has been exactly estimated by the online estimator,

so that the shape-motion difference model satisfies:

sk = sk−1 + Ĵk ·∆rk (25)

In this section, we design the necessary motion command ∆rk
to minimize the shape error between the measured feature sk
and a constant target feature s∗. Define the deformation error
as ek = s∗ − sk. Then, according to (25), we have

ek − ek−1 = −Ĵk∆rk (26)

ek + ek−1 = 2ek−1 − Ĵk∆rk (27)

Our new shape control method also has the capability to
limit the magnitude of ∆rk, which helps to avoid drastic
instantaneous movements during the shaping motions (this
valuable property is particularly useful during the manipula-
tion of soft/delicate objects). To this end, consider first the
following performance index:

Q = eᵀkek + λ∆rᵀk∆rk (28)

where λ is the weight that controls the magnitude of ∆rk. It
can also guarantee the smoothness of rk. Note that if λ is too
small, the system may oscillate or even lose stability.

By substituting (26) into (28), we have:

Q =
(
ek−1 − Ĵk∆rk

)ᵀ (
ek−1 − Ĵk∆rk

)
+λ∆rᵀk∆rk (29)

The partial derivative of (29) along ∆rk yields:

∂Q

∂∆rk
= −2Ĵᵀ

k

(
ek−1 − Ĵk∆rk

)
+ 2λ∆rk (30)

By equating (30) to zero, we can compute the velocity
command ∆rk as:

∆rk =
(
λEq + Ĵᵀ

kĴk

)−1
Ĵᵀ
kek−1 (31)

Thus, at each time step, the incremental position command is
calculated as follows:

rk = rk−1 +
(
λEq + Ĵᵀ

kĴk

)−1
Ĵᵀ
kek−1 (32)

Proposition. Consider that the model estimation algorithm
(either LKF or UKF) exactly approximates the deformation
Jacobian matrix such that Jk = Ĵk. For this situation, the
shape servo-controller (31) enforces a stable (passive) closed-
loop system that locally minimises the error ek to a steady-
state area whose magnitude depends on the feasibility of the
target feature.

Proof: From (31), we can have the expression:

eᵀk−1Ĵk = ∆rᵀk

(
λEq + Ĵᵀ

kĴk

)
(33)

Let us define the discrete Lyapunov function and its finite
difference as [29]:

Vk =
1

2
eᵀkek (34)

∆Vk = Vk − Vk−1 =
1

2
eᵀkek −

1

2
eᵀk−1ek−1 (35)
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By substituting (26) and (27) into (35) we obtain:

∆Vk =
1

2
(ek + ek−1)

ᵀ
(ek − ek−1)

= −
(
ek−1 −

1

2
Ĵk∆rk

)ᵀ

Ĵk∆rk

= −eᵀk−1Ĵk∆rk +
1

2
∆rᵀkĴ

ᵀ
kĴk∆rk (36)

Then, substituting (33) into (36) yields:

∆Vk = −∆rᵀk

(
λEq + Ĵᵀ

kĴk

)
∆rk +

1

2
∆rᵀkĴ

ᵀ
kĴk∆rk

= −∆rᵀkL1∆rk = −eᵀk−1L2ek−1 ≤ 0

L1 = λEq +
1

2
Ĵᵀ
kĴk

L2 = Ĵk

(
λEq + Ĵᵀ

kĴk

)−1
L1

(
λEq + Ĵᵀ

kĴk

)−1
Ĵᵀ
k (37)

The stability (passivity) of the system is guaranted since (by
definition) the Jacobian matrix Ĵk has a full column rank,
therefore, the matrix L1 is symmetric and positive definite.
Now, to analyze the stability properties of the feedback shape
error ek, let us note that the symmetric matrix L2 is only posi-
tive semi-definite. This implies that the magnitude of the shape
feedback error ‖ek‖ can only be minimised to a local region
around the origin. For these types of overdetermined visual
servoing control schemes, global asymptotic convergence of
the error cannot be guaranteed [30].

Remark 2. The proposed velocity command (31) and Ja-
cobian estimation algorithms (LKF, UKF) are entirely deter-
mined from the input and output data collected by the sensor
feedback and have no relationship with the mathematical
model and order of the controlled process.

D. Online Parameter Tuning

In general, the weight λ is constant, which makes the
controller not adaptable to different control performance re-
quirements. Meanwhile, elastic rods of different materials have
different physical properties for manipulation. Some can be
manipulated at high speed, while some are only suitable for
chronic uniform deformation. Introducing parameter optimiza-
tion criterion, the controller can be adaptively extended to
various application scenarios.

Since we define ek = s∗ − sk and by referring to (26) and
(31), the closed-loop system can be obtained as follows:

ek = ek−1 − Ĵk

(
λEq + Ĵᵀ

kĴk

)−1
Ĵᵀ
kek−1 (38)

There are several performance optimization criteria corre-
sponding to diverse performance requirements. In this paper,
three of them are introduced:

1) ISE criterion. Integral of the squared error (ISE) is one
of the most well known criteria for obtaining optimal
controller parameters [31], which penalizes both positive
and negative errors.

H =
1

2

∞∑
k=1

eᵀkek (39)

where, ek defined in (38). According to (31) and (39),
we can obtain the ISE-based parameter optimization
criterion as:

∂H

∂λ
=

∞∑
k=1

eᵀkĴkZĴ
ᵀ
kek−1 (40)

Z =
(
λEq + Ĵᵀ

kĴk

)−2
(41)

2) IAE criterion. Another frequently used criteria, the in-
tegral of the absolute error (IAE), is shown as follows:

H =

∞∑
k=1

‖ek‖ (42)

Similar to the previous derivation, we can obtain the
IAE-based parameter optimization criterion as:

∂H

∂λ
=

∞∑
k=1

eᵀk√
eᵀkek

ĴkZĴ
ᵀ
kek−1 (43)

where Z is defined by (41). Comparison of (40) and (43)
shows that IAE is sensitive with small errors (smaller
than one) while ISE works well on large errors.

3) JEU criterion. ISE and IAE only consider the per-
formance requirements on errors but not meet higher
standards of the system, such as the minimum overshoot,
the peak time, the rising time, etc.. Therefore, in order to
more comprehensively adjust the system transition per-
formance and dynamic properties, JEU criterion which is
a weighted sum of ISE and Integral Squared Controller
Output [32], [33] is used here. In our case, the velocity
command constraint is added:

H =
1

2

∞∑
k=1

ω1e
ᵀ
kek + ω2∆rᵀk∆rk (44)

where ω1 and ω2 are positive scalar weight that satisfy
ω1 + ω2 = 1. The parameter optimization criterion is:

∂H

∂λ
=

∞∑
k=1

(
ω1e

ᵀ
kĴk − ω2∆rᵀk

)
ZĴᵀ

kek−1 (45)

where Z is defined by (41). Besides, ISE can be seen as
a simplified version of JEU.

For any of the above methods, the parameter λ is updated
with the gradient descent rule:

λk = λk−1 + ∆λ, ∆λ = −d · ∂H
∂λ

(46)

where H is defined in (39), (42), (44) and d is a small positive
weight which controls the update rate of λ.

IV. SIMULATION RESULTS

We consider a planar robot that rigidly grasps one end
of an elastic rod, whose other end is static. A monocular
vision sensor observes the manipulated cable and measures
its 2D contour in real-time. The cable simulation is sim-
ulated as in [34] by using the minimum energy principle
[35]. This simulator is publicly available at https://github.com/
q546163199/shape deformation/. All numerical simulations
are implemented in MATLAB. Since the real feedback data
point is in pixels, the simulated cable is designed to move
within the range of 600px×600px.

https://github.com/q546163199/shape_deformation/
https://github.com/q546163199/shape_deformation/
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Fig. 4. Feature extraction comparison among polynomial, Bézier, NURBS
and Fourier among 30 shape sets in the simulation.
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Fig. 5. Comparison between the visually measured cable profile (black solid
line) and its approximation with NURBS series (red dashed line)

A. Feature Extraction Comparison

To verify the accuracy of the proposed shape feature, we
compare three regression equations (9), (10), (11) with the
Fourier method (12). Fig. 4 describes the error (c̄ − Ḡs)
between the original shape c̄ and the reconstruction shape Ḡs,
which depicts the NURBS has the highest accuracy while the
polynomial is the worst. The higher the polynomial order is,
the worse the regression becomes. Table I shows that Fourier
is the fastest. Although the NURBS is the slowest, it can
be handled as long as the robot motion is slow enough. In
the following sections, we uniformly use the NURBS with
approximation order of 8.

TABLE I
COMPARISON RESULTS AMONG FOURIER, POLYNOMIAL, BÉZIER AND

NURBS AMONG 30 SHAPE SETS

G s Order Average time Average error

Fourier 200x18 18 4 0.002s 8.1965px
Polynomial 200x18 18 8 0.004s 16.5667px

Bézier 200x18 18 8 0.007s 10.1931px
NURBS 200x18 18 8 0.011s 4.5628px

B. Validation of the Jacobian Estimation

In this section, we compare the accuracy of three methods
in estimating the Jacobian matrix, namely, LKF, UKF, and
Recursive Least Square (RLS) given in (47). The cable is ma-
nipulated by the robot which moves along a circular trajectory
whose center is (0.4, 0.4) in the anticlockwise direction. At the
very beginning of the movement, the robot moves the grasped
cable in an initial sampling area to initialize the Jacobian
matrix, based on which Jacobian matrix update with new input
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Fig. 6. Profiles of the cost functions T1 and T2 that are computed along the
circular trajectory around the center (0.4, 0.4).
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Fig. 7. Initial (red dashed line) and target (black solid line) configurations
of the shape deformation simulation among RLS, LKF, and UKF.
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Fig. 8. Profiles of the cost function T1 and velocity command ∆rk among
RLS, LKF and UKF within manipulation task.
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Fig. 9. Profiles of the cost function T1 and velocity command ∆rk among
FIX, ISE, IAE and JEU (ω1 = 0.5, ω2 = 0.5) tested in the LKF case.
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Fig. 10. Profiles of the cost function T1 and velocity command ∆rk between
two different weight values (case 1: ω1 = 0.1, ω2 = 0.9 and case 2: ω1 =
0.9, ω2 = 0.1) of JEU (44) tested in the LKF case.

and output data

Ĵk = Ĵk−1 +

(
yk − Ĵk−1∆rk

)
∆rᵀkUk−1

λ+ ∆rᵀkUk−1∆rk

Uk =
1

λ

(
Uk−1 −

Uk−1∆rk∆rᵀkUk−1

λ+ ∆rᵀkUk−1∆rk

)
(47)

Fig. 5 demonstrates three measured shapes (black solid
line) of the cable in circular motion, and the corresponding
approximated shapes (red dashed line) based on the feedback
feature vector s. To assess the accuracy of the proposed
algorithms, two errors are computed throughout the process:

T1 = ‖c̄∗k − c̄k‖ T2 =
∥∥∥∆sk − Ĵk∆rk

∥∥∥ (48)

Fig. 6 demonstrates the plots of T1 and T2 during the
circular motion. Except for the UKF method, both errors
increase when the robot is initializing the Jacobian matrix and
decrease when the Jacobian matrix estimitor starts to work.
Compared with RLS and LKF, the UKF method has a stronger
ability to estimate the Jacobian matrix for both errors quickly
converge to a smaller steady error under the UKF method.

C. Manipulation of Elastic Rods

In this section, we use adaptive controller (31) with fixed
λ to allow the robot to manipulate the simulated cable into
the desired shapes. Note that, to design feasible target cable
shapes, a number of attempting computation is conducted.
Fig. 7 depicts the progress of the cable deformation under
the controllers based on RLS, LKF, and UKF. The red dashed
curves represent the initial and transitional trajectories, and the
black solid curve represents the target shape with parameters
vector s∗. Fig. 8 depicts the error T1 and the velocity command
∆rk. Table II clearly shows that UKF is the best method with
the shortest convergence time and smallest deformation error.

TABLE II
RESULTS AMONG RLS, LKF AND UKF

RLS LKF UKF

Steps 534 488 158
Time(second) 55.54 48.83 17.91

Fig. 11. Experimental setup.

D. Comparison of Parameter Optimization

In this section, we compare the performance of various
parameter optimization criteria, including FIX (fixed λ), ISE
(39), IAE (42) and JEU (44)), based on LKF. Fig. 9 depicts the
profiles of the error T1 and the velocity command ∆rk. Table
III shows that ISE has shortest convergence time, while the
FIX has the longest one, for ISE focuses on compensating
errors so that the control command based on ISE heavily
fluctuates in order to make the error converge as soon as
possible. Meanwhile, ISE has a better performance than IAE
for it is sensitive of large errors.

TABLE III
COMPARISON AMONG FIXED, ISE, IAE AND JEU TESTED IN THE LKF

Fixed ISE IAE JEU

Steps 386 186 233 291
Time(second) 36.42 17.18 21.92 31.17

To further illustrate the impact of different weight factors
for JEU (44), we give two cases:
• case 1: ω1 = 0.1, ω2 = 0.9, namely, we pay more

attention to the smoothness of the velocity command.
• case 2: ω1 = 0.9, ω2 = 0.1, namely, we pay more

attention to the convergence speed of the error.
Fig. 10 shows that the error in case 1 converges slower with

smoother velocity commands than case 2. This further verifies
the effectiveness and feasibility of the parameter optimization
criterion (44).

Remark 3. In the real applications, it is necessary to set the
weight coefficients ω1, ω2 reasonably to prevent damage of
the robotic arm caused by high-frequency chattering of the
command signal.

V. EXPERIMENTAL RESULTS

In this section, we conduct various experiments using
a UR5 robot constrained to xy-plane (q = 2) motion
∆r = (∆rx,∆ry) defined in the base frame. An ex-
perimental video demonstrating our method can be down-
loaded here https://github.com/q546163199/experiment video/
raw/master/paper1/video.mp4. Fig. 11 shows our experiment
setup. The rod’s images are captured by a Logitech C270
camera and processed with a Linux-based PC at 30 fps
and OpenCV. The results are displayed by MATLAB. We
assess each algorithm’s convergence speed by comparing the
deformation of the moving cable every two frames.

https://github.com/q546163199/experiment_video/raw/master/paper1/video.mp4
https://github.com/q546163199/experiment_video/raw/master/paper1/video.mp4


QI et al.: ADAPTIVE SHAPE SERVOING USING PARAMETERIZED REGRESSION FEATURES 9

(a) Marker point (b) ROI selection (c) Thresholding

(d) Thinning (e) Coordinate sorting (f) Downsampling

Fig. 12. Image processing steps.

Algorithm 1 Centerline of the object coordinate sorting

Input: Unordered centerline pin =
[
p0in, . . . , p

N
in

]
; starting

point p0out;
Output: Ordered centerline pout =

[
p0out, . . . , p

N
out

]
;

1: k = 0, j = 0
2: box size = 10
3: while j <= N − 1 do
4: for i = 0 to column(pin)− 1 do
5: if |piin − p

j
out|x ≤ box size and

|piin − p
j
out|y ≤ box size then

6: Save pkbox = piin with index i
7: k = k + 1
8: end if
9: end for

10: index =
{
i|min

∥∥∥pkbox − pjout∥∥∥
2

}
11: j = j + 1
12: pjout = pindexin

13: Delete pindexin from pin

14: k = 0
15: Reset pbox

16: end while

A. Image Processing

This section presents the relevant image processing for
feature extraction and data sampling. The overall process
(shown in Fig. 12) is as follows:

1) Segment the red area nearby the gripper based on HSV
color space and abstract it as a green marker point (see
Fig. 12a).

2) Segment the region of the interest (ROI) containing the
rod according to the green marker point (see Fig. 12b).

3) Identify the rod in ROI, remove the noise, and obtain a
binary image with the skeleton of the rod using OpenCV
morphological opening algorithm (see Fig. 12c).

4) Get an unordered centerline by applying OpenCV GUO-
HALL thinning algorithm to the rod skeleton (see Fig.
12d).

5) Design the Algorithm 1 to get the ordered centerline.
Note that starting point is the closest point to the marker
point on the centerline. (see Fig. 12e).
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101

Fig. 13. Feature extraction comparison among polynomial, Bézier, NURBS
and Fourier among on 30 shape sets in the experiment.

(a) RLS (b) LKF (c) UKF

Fig. 14. Comparison between the visually measured cable profile (green
dashed line) and its approximation with NURBS series (red dashed line)

6) Equidistantly sample the ordered centerline to get a fixed
number of data points (see Fig. 12f).

B. Feature Extraction Comparison

Similar to Section IV-A, we control the random movement
of the UR5 to get 30 sets of centerline data; Fig. 13 shows
these comparison results. We can see that NURBS’s fitting
accuracy is still the best, while the polynomial is the worst;
this is consistent with the simulation results. It further verifies
the effectiveness of the feature extraction algorithms designed
in this paper. In the following sections, we use NURBS with
approximation order of 8.

C. Validation of the Jacobian Estimation

Similar to Section IV-B, we test the accuracy of three
methods (RLS, LKF, and UKF) for estimating the Jacobian
matrix. In Fig. 14, the green dashed line is obtained by real
feedback measurement, while the red dashed line represents
the cable’s estimation centerline with the NURBS series.
From Fig. 15, we can see that UKF estimates are the best.
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Fig. 15. Profiles of the cost functions T1 and T2 that are computed along
the circular trajectory.
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(a) experiment1-RLS (b) experiment2-RLS (c) experiment3-RLS (d) experiment4-RLS (e) experiment5-RLS (f) experiment6-RLS

(g) experiment1-LKF (h) experiment2-LKF (i) experiment3-LKF (j) experiment4-LKF (k) experiment5-LKF (l) experiment6-LKF

(m) experiment1-UKF (n) experiment2-UKF (o) experiment3-UKF (p) experiment4-UKF (q) experiment5-UKF (r) experiment6-UKF

Fig. 16. Initial (black solid line), transition (green solid line) and target (red solid line) configurations in the six shape deformation experiments which have
a variety of different initial and target shape with a single robot among RLS, LKF and UKF.
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(f) experiment6 result

Fig. 17. Profiles of the cost function T1 and velocity command ∆rk among RLS, LKF and UKF within six shape deformation experiments.



QI et al.: ADAPTIVE SHAPE SERVOING USING PARAMETERIZED REGRESSION FEATURES 11

(a) Fault case 1 (b) Fault case 2

Fig. 18. Fault shape deformation experiments display.

(a) FIX (b) ISE

(c) IAE (d) JEU

Fig. 19. Initial (black solid line), transition (green solid line) and target (red
solid line) configurations among FIX, ISE, IAE and JEU (ω1 = 0.5, ω2 =
0.5) tested in the LKF.
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Fig. 20. Profiles of the cost function T1 and velocity command ∆rk among
FIX, ISE, IAE and JEU (ω1 = 0.5, ω2 = 0.5) tested in the LKF.

(a) case 1 (b) case 2

Fig. 21. Initial (black solid line), transition (green solid line) and target (red
solid line) configurations between two conditions (case 1: ω1 = 0.01, ω2 =
0.99 and case 2: ω1 = 0.99, ω2 = 0.01) of JEU (44) tested in the LKF.
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Fig. 22. Profiles of the cost function T1 and velocity command ∆rk between
two different weight values (case 1: ω1 = 0.01, ω2 = 0.99 and case 2:
ω1 = 0.99, ω2 = 0.01) of JEU (44) tested in the LKF.

Meanwhile, no noticeable fluctuation of UKF plots reflects
the strong adaptability of the UKF algorithm to effectively
estimate the Jacobian matrix in different local regions.

D. Manipulation of Elastic Rods

Similar to Section IV-C, we use the proposed adaptive
controller (31) with fixed λ to allow the robot to manipulate
the simulated cable into the desired shapes. Note that, to
design feasible target cable shapes, the robot grasping the
cable moves to a predefined position and the target shape is
computed using image processing and shape feature extraction
algorithm. Then, the robot automatically goes back to the
initial position and starts the shape deformation experiment.
Considering safety, the upper limit of the saturation of the
velocity command ∆rk is set to 0.01m/s.

We carry out six experiments with a variety of different
initial and desired shapes, shown in Fig. 16, while Fig. 17
shows the profiles of T1 and the velocity command ∆rk.
No apparent fluctuations in Fig. 16 shows that the proposed
algorithms have excellent adaptability to the different starting
conditions. Corresponding to the simulation results, Fig. 17
shows that UKF converges the fastest while FIX is the slowest.
UKF can quickly respond to sudden deviations of the system
and control the robot back to the normal state, showing the
strong adaptability and robustness.

During the experiment, we found the following fault con-
ditions, shown in Fig. 18.

1) If the initial shape is too different from the target shape
or the initial sampling area, it is easy to cause singular
control problems, seen in Fig. 18a.

2) If the target shape is similar to a straight line, as the
proposed feature extraction algorithm is based on the
least square method, so it is easy to cause singularity in
the feature extractor, which makes the velocity command
∆rk too large and the system out of control, seen in Fig.
18b.

Therefore, in the practical applications, it is necessary to
guarantee the initial shape around the initial sampling area
and avoid singular shapes such as straight lines.



12

E. Parameter Optimization Comparison

Similar to Section IV-D, we validate the effectiveness of
the proposed parameter optimization criteria based on LKF,
shown in Fig. 19. Set the upper limit of the velocity command
∆rk as 0.02m/s. Fig. 20 demonstrates that three adaptive
methods (ISE, IAE, and JEU) converge to smaller errors and
provide smoother velocity commands than FIX. Meanwhile,
ISE converges the fastest and FIX converges the slowest. Since
we set ω1 = 0.5, ω2 = 0.5 for JEU method, to some extent,
the effect of JEU is similar to IAE. At the same time, the
velocity command ∆rk fluctuates heavily under the ISE and
keeps stable under the JEU. The correspondence between ex-
perimental results and simulation results demonstrates that the
proposed parameter optimization criteria can effectively adjust
the dynamic value of λ according to the control requirements.

Consistent with the simulation part, we also verify the effect
of the JEU with different weight coefficients, shown in Fig.
21. The Difference is that, to highlight the impact of different
weight coefficients, we design, case 1: ω1 = 0.01, ω2 = 0.99
and case 2: ω1 = 0.99, ω2 = 0.01. Fig. 22 shows that
the error in case 1 converges slower with smoother velocity
commands. In contrast, the velocity command of case 2 is
relatively larger and close to the upper limit of saturation.
From Fig. 22, we know different weight coefficients of JEU
can bring significantly different control performance, thus, in
the practical applications, they should be thoughtfully designed
according to the system performance requirements.

VI. CONCLUSION

This paper presents a new visual servoing framework for
automatically manipulating elastic rods to a desired configu-
ration; It includes shape feature design, Jacobian matrix esti-
mation, and online parameter optimization. First, new shape
features (Bézier/NURBS) based on a regressive identification
process are presented to characterize the object’s contour. Sec-
ond, we compare the performance of two KFs (LKF, UKF) in
estimating the nonlinear time-varying Jacobian matrix. Then,
the velocity command and its implementation are derived. To
optimize control parameters, we utilize various performance
criteria and an adaptive update law combined with a gradient
descent rule. Finally, numerical and experimental results val-
idate the effectiveness and feasibility of the proposed control
method.

The proposed shape features (Bézier/NURBS) flexibly rep-
resent the high-dimension contour information with a low-
dimension feature vector, in which NURBS has the highest
accuracy. The identification method needs no artificial markers
which makes it suitable for real-world applications. When
estimating the shape Jacobian matrix, UKF performs better
than LKF at nonlinear time-varying scenarios. The introduced
parameter optimization criteria are able to meet different
performance requirements and achieve online adaptive param-
eter adjustment. The sensorimotor model is estimated from
visual feedback data without prior knowledge of the object
deformation properties and camera calibration.

The proposed method also has many limitations. For in-
stance, the manipulated object is limited to elastic materials

(i.e. with a self-recovery ability), hence, the proposed approach
might not be suitable for inelastic or non-homogeneous ob-
jects. The method is not able to judge if the desired config-
uration is reachable, which might lead to the failure during
the task. Besides, the proposed centerline coordinate sorting
algorithm has an inevitable delay; Thus, the algorithm is
mainly applied to the low-speed movements. For the KF-based
estimators, it should be assumed that both process noise and
measurement noise are Gaussian noise with known distribution
(in the simulations and experiments, we set both as constant
matrices), which is hard to guarantee in practice. We also
assume that the object is always within the camera’s visible
range. However, occlusions caused by the robot’s movement
or the object itself may sometimes happen.

As future work, we plan to manipulate objects into a more
complex shapes, such as spatial 3D shapes or by using multiple
robots. An algorithm with a complete feature detection will
be designed to improve the system’s robustness in the case
of occlusion. We may combine neural networks (due to
its strong nonlinear function approximation ability) with the
manipulation tasks to obtain more accurate features and to
determine the reachability of the desired shape.
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