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Abstract—The robotic manipulation of compliant objects is
currently one of the most active problems in robotics due to its
potential to automate many important applications. Despite the
progress achieved by the robotics community in recent years, the
3D shaping of these types of materials remains an open research
problem. In this paper, we propose a new vision-based controller
to automatically regulate the shape of compliant objects with
robotic arms. Our method uses an efficient online surface/curve
fitting algorithm that quantifies the object’s geometry with a
compact vector of features; This feedback-like vector enables
to establish an explicit shape servo-loop. To coordinate the
motion of the robot with the computed shape features, we
propose a receding-time estimator that approximates the system’s
sensorimotor model while satisfying various performance criteria.
A deep adversarial network is developed to robustly compensate
for visual occlusions in the camera’s field of view, which enables
to guide the shaping task even with partial observations of
the object. Model predictive control is utilized to compute the
robot’s shaping motions subject to workspace and saturation
constraints. A detailed experimental study is presented to validate
the effectiveness of the proposed control framework.

Note to Practitioners—This paper is motivated by the problem
of manipulating compliant objects by robotic arms. Classical
vision-based controllers are unsuitable for this task as they
rely on ideal setups that are difficult to meet in practice,
e.g., unoccluded views and unconstrained environments. The
method proposed in this paper aims to address these limitations.
For that, we use curve fitting algorithms to compute features
that approximate the object’s geometry; This approach is more
efficient than traditional dense point clouds. To facilitate the
method’s implementation in real-world environments, we pro-
pose an optimization-based controller that computes the robot’s
motion while simultaneously satisfying various constraints, e.g.,
workspace limits, input saturation, etc. The reported experiments
validate the feasibility of our strategy in dynamic/unstructured
situations, yet, note that this approach may not properly shape
materials with negligible elastic properties (e.g., fabrics, food
materials). Our proposed methods can be used in many other ap-
plications ranging from classical pick-and-place tasks to visually
guiding robots with unknown kinematic models.

Index Terms—Robotics; Visual Servoing; Deformable Objects;
Occlusion Compensation; Model Predictive Control
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I. INTRODUCTION

THE manipulation/shaping of deformable bodies by robots
is a fundamental problem that has recently attracted

the attention of many researchers [1]; Its complexity has
forced researchers to develop new methods in a wide range
of fundamental areas that include representation, learning,
planning, and control. From an applied research perspec-
tive, this challenging problem has shown great potential in
various economically-important tasks such as the assembly
of compliant/delicate objects [2], surgical/medical robotics
[3], cloth/fabric folding [4], etc. The manipulation of com-
pliant materials contrast with its rigid-body counterpart in
that physical interactions will invariably change the object’s
shape, which introduces additional degrees-of-freedom to the
typically unknown objects, and hence, complicates the ma-
nipulation task. While great progress has been achieved in
recent years, the development of these types of embodied
manipulation capabilities is still largely considered an open
research problem in robotics and control.

There are various technical issues that hamper the imple-
mentation of these tasks in real-world unstructured environ-
ments, which largely differ from implementations in ideal sim-
ulation environments (a trend followed by many recent works).
Here, we argue that to effectively servo-control the shape of
deformable materials in the field, a sensor-based controller
must possess the following features: 1) Efficient compression
of the object’s high-dimensional shape; 2) Occlusion-tolerant
estimation of the objects geometry; 3) Adaptive prediction of
the differential shape-motion model; Our aim in this paper is
precisely to develop a new shape controller endowed with all
the above-mentioned features. The proposed method is for-
mulated under the model predictive control (MPC) framework
that enables to compute shaping actions that satisfy multiple
performance criteria (a key property for real engineering
applications).

A. Related Work

Many researchers have previously studied this challenging
problem (we refer the reader to [5], [6] for comprehensive
reviews). To servo-control the object’s non-rigid shape, it is
essential to design a low-dimensional feature representation
that can capture the key geometric properties of the object.
Several representation methods have been proposed before,
e.g., geometric features based on points, angles, curvatures,
etc [7], [8]; However, due to their hard-coded nature, these
methods can only be used to represent a single shaping
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action. Other geometric features computed from contours and
centerlines [9]–[11] can represent soft object deformation in a
more general way. Various data-driven approaches have also
been proposed to represent shapes, e.g., using fast point feature
histograms [12], bottleneck layers [13], [14], principal compo-
nent analysis [15], etc. However, there is no widely accepted
approach to compute efficient/compact feature representations
for 3D shape; This is still an open research problem.

Occlusions of a camera’s field of view pose many compli-
cations to the implementation of visual servoing controllers,
as the computation of (standard) feedback features requires
complete visual observations of the object at all times. Many
methods have been developed to tackle this critical issue,
e.g. [16] used the estimated interaction matrix to handle
information loss in visual servoing, yet, this method requires
a calibrated visual-motor model. Coherent point drift was
utilized in [17] to register the topological structure from
previous sequences and to predict occlusions; However, this
method is sensitive to the initial point set, further affects the
registration result. A structure preserved registration method
was presented in [18] to track occluded objects; This approach
has good accuracy and robustness to noise, yet, its efficiency
decreases with the number of points. To efficiently implement
vision-based strategies in the field, it is essential to develop
algorithms that can robustly guide the servoing task, even in
the presence of occlusions.

To visually guide the manipulation task, control methods
must have some form of model that (at least approximately)
describes that how the input robot motions produce output
shape changes [19]; In the visual servoing community, such
differential relation is typically captured by the so-called
interaction (Jacobian) matrix [20]. Many methods have been
proposed to address this issue, e.g. the Broyden update rule
[21] is a classical algorithm to iteratively estimate this trans-
formation matrix [7], [22], [23]. Although these types of algo-
rithms do not require knowledge of the model’s structure, its
estimation properties are only valid locally. Other approaches
with global estimation properties include algorithms based
on (deep) artificial neural networks [2], optimization-based
algorithms [24], adaptive estimators [25], etc. However, the
majority of existing methods estimate this model based on a
single performance criterion (typically, a first-order Jacobian-
like relation), which limits the types of dynamic responses
that the robot can achieve during a task. A multi-objective
model estimation is particularly important in the manipulation
of compliant materials, as their mechanical properties are
rarely known in practice, thus, making hard to meet various
performance requirements.

To compute the active shaping motions, most control meth-
ods only formulate the problem in terms of the final target
shape and do not typically consider the system’s physical
constraints. MPC represents a feasible solution to these issues,
as it performs the control tasks by optimizing cost functions
over a finite time-horizon rather than finding the exact ana-
lytical solution [26]; This allows MPC to compute controls
that guide the task while satisfying a set of constraints, e.g.,
control saturation, workspace bounds, etc. Despite its valuable
and flexible properties, MPC has not been sufficiently studied
in the context of shape control of deformable objects.

B. Our Contribution

To solve the above-mentioned issues, in this paper we
propose a new control framework to manipulate purely-elastic
objects into desired configurations. The original features of our
new methodology include: 1) A parametric shape descriptor
to efficiently characterize 3D deformations based on online
curve/surface fitting; 2) A robust shape prediction network
based on adversarial neural networks to compensate visual
occlusions; 3) An optimization-based estimator to approx-
imate the deformation Jacobian matrix and satisfy various
performance constraints; 4) An MPC-based motion controller
to guide the shaping motions while simultaneously solving
workspace and saturation constraints.

To the best of the authors’ knowledge, this is the first time
that a shape servoing controller is developed with all the
functions proposed in this paper. To validate the effectiveness
of our new methodology, we report a detail experimental
study with a robotic platform manipulating various types of
compliant objects.
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Fig. 1. Schematic diagram of the manipulations of elastic objects, including
deformation (centerline, contour, and surface) and positioning tasks of rigid
objects. The framework aims to command the robot to manipulate elastic
objects into the target configurations.
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Fig. 2. Various shape configurations, including centerline, contour and
surface. The first row shows the pixel coordinates for each shape. The second
row shows the Cartesian coordinates related to the corresponding pixel ones
through OpenCV/RealSense. The generated shapes are ordered, fixed-
sampled and equidistant. The rigid object adopts surface representation.

II. PROBLEM FORMULATION

Notation: In this paper, we use the following frequently-
used notation: Bold small letters, e.g., v, denote column
vectors, while bold capital letters, e.g., M, denote matrices.
Time evolving variables are denoted as xk, for k as the discrete
time instant. The n ×m matrix of ones is denoted by In×m
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and the identity matrix as En. Ln represents the low triangle
matrix of In×n, and ⊗ represents the Kronecker product.

The schematic diagram of the proposed shape servoing
framework is conceptually illustrated in Fig. 1. A depth camera
with eye-to-hand configuration observes the shapes of elastic
objects that are manipulated by the robot, see Fig. 2. We denote
the 3D measurement points captured by the vision system as:

c̄ = [cᵀ1 , . . . , c
ᵀ
N ]

ᵀ ∈ R3N , ci = [xi, yi, zi]
ᵀ ∈ R3 (1)

for N as the number of points, and ci as the 3D coordinates
of the ith point, expressed in the camera frame.

A. Feature Sensorimotor Model

Let us denote the position of the robot’s end-effector by
r ∈ R3. As the dimension of the 3N observed points c̄ is
typically very large, therefore, its direct use as a feedback
signal for shape servocontrol is impractical. Therefore, an
efficient controller may typically require to use some form
of dimension reduction technique. To deal with this issue,
we construct a feature vector s = fs(c̄) : R3N 7→ Rp, for
p� 3N , to represent the geometric feedback c̄ of the object.
This compact feedback-like signal will be used to design our
automatic 3D shape controller.

For purely elastic objects undergoing deformations, it is
reasonable to model that the object configuration is only de-
pendant on its potential energy P (thus, all inertial and viscous
effects are neglected from our analysis [10]). We model that
P is fully determined by the feedback feature vector s and the
robot’s position r [27], i.e.: P = P(s, r). In steady-state, the
extremum expression satisfies (∂P/∂s)ᵀ = a(s, r) = 0 [28].
We then define the following matrices:

∂2P
∂s2

= G(s, r),
∂2P
∂r∂s

= K(s, r) (2)

which are useful to linearize the extremum equation (by using
first-order Taylor’s series expansion) as follows:

a(s + ∆s, r + ∆r) ≈ a(s, r) + G(s, r)∆s + K(s, r)∆r (3)

for ∆s and ∆r as small changes. Note that as a(s + ∆s, r +
∆r) = a(s, r) = 0 is satisfied, we can obtain the following
motion model:

∆s ≈ −G(s, r)−1K(s, r)∆r = J(s, r)u (4)

where J(s, r) = −G(s, r)−1K(s, r) ∈ Rp×3 represents the
deformation Jacobian matrix (which depends on both the
feature vector and robot position), and u represents the robot’s
motion control input. This model can be expressed in an
intuitive discrete-time form:

∆sk+1 = Jk(sk, rk)uk (5)

The deformation Jacobian matrix (DJM) Jk indicates how
the robot’s action uk = rk − rk−1 produces changes in the
feedback features ∆sk+1 = sk+1 − sk. Clearly, the analytical
computation of Jk requires knowledge of the physical proper-
ties and model of the elastic object and the vision system,
which are difficult to obtain in practice. Thus, numerical
methods are often used to approximate this matrix in real-time,
which enables to perform vision-guided manipulation tasks.

In this paper, we consider a robot manipulator whose
control inputs represent velocity commands (here, modelled
as the differential changes ∆r). It is assumed that ∆r can be
instantaneously executed without delay [11].

Problem statement. Design a vision-based control method
to automatically manipulate a compliant object into a target 3D
configuration, while simultaneously compensating for visual
occlusions of the camera and estimating the deformation
Jacobian matrix of the object-robot system.

III. SHAPE REPRESENTATION

This section presents how online curve/surface fitting (least-
squares minimization (LSM) [29] and moving least squares
(MLS) [30]) is combined with a parametric shape descriptor
to compute a compact vector of feedback shape features.

A. LSM-Based Features

1) Centerline and Contour Extraction: Both are expressed
as a parametric curve dependent on the normalized arc-length
0 ≤ ρ ≤ 1. Then, the point can be represented as ci = f(ρi),
with ρi as the arc-length between the start point c1 and ci,
where ρ1 = 0 and ρN = 1. The fitting functional f(·) is
constructed as follows:

f (ρ) =

n∑
j=0

pjBj,n (ρ) (6)

where the vector pj ∈ R3 denotes the shape weights, n ∈ N∗
specifies the fitting order, and the scalar Bj,n(ρ) represents a
parametric regression function, which may take various forms,
such as: [31]
• Polynominal parameterization [32]:

Bj,n (ρ) = ρj (7)

• Bernstein parameterization [33]:

Bj,n (ρ) = Cjn(1− ρ)
n−j

ρj (8)

where Cjb represents the binomial coefficient.
• Cox-deBoor parameterization [34]:

Bj,n (ρ) =
1

n!

n−j∑
l=0

(
(−1)

l
Cln+1(ρ+ n− j − l)n

)
(9)

• Trigonometric parameterization [35]:

Bj,n (ρ) =


1, j = 0

cos( j+1
2 ρ), j > 0, j is odd

sin( j2ρ), j > 0, j is even
(10)

From (1) and (6), we can compute the following fitting cost
function:

Q = (Bs− c̄)
ᵀ

(Bs− c̄) (11)

for a “tall” regression-like matrix B constructed as:

B = [Bᵀ
1 , . . . ,B

ᵀ
N ]ᵀ ∈ R3N×3(n+1)

Bi = [B0,n(ρi), . . . , Bn,n(ρi)]⊗E3 ∈ R3×3(n+1) (12)

and s = [pᵀ
0 , . . . ,p

ᵀ
n]ᵀ ∈ R3(n+1) as a compact feedback

feature vector that represents the shape. We seek to minimize
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Fig. 3. Scheme diagram of MLS. The weight ω(εi) is the square error
between the fitted value and the given value. The fitting smoothness is
regulated by adjusting the weight values.

(11) to obtain a feature vector s that closely approximates
c̄ ≈ Bs. The solution to (11) is:

s = (BᵀB)
−1

Bᵀc̄ (13)

where it is assumed that N � n+ 11.
2) Surface Extraction: The equation of the surface is de-

fined as follows:

z = f(x, y) =

nx∑
j=0

ny∑
l=0

Bj,nx (x)Bl,ny (y) qjl (14)

where nx, ny ∈ N∗ are the fitting order along with x and y
direction, and qjl ∈ R is the shape weight. Same as with (11),
as fitting cost function is introduced:

Q = (Ds− z)
ᵀ

(Ds− z) (15)

for a “augmented” regression matrix D satisfying:

D = [Dᵀ
1 , . . . ,D

ᵀ
N ]ᵀ ∈ RN×(nx+1)(ny+1)

Di = [B0,nx(xi)B0,ny (yi), . . . , Bnx,nx(xi)Bny,ny (yi)]

Dᵀ
i ∈ R(nx+1)(ny+1), for i = 1, . . . , N (16)

The depth vector is defiend as z = [z1, . . . , zN ]ᵀ ∈ RN , and
the feature vector is s =

[
q00, . . . , qnxny

]ᵀ ∈ R(nx+1)(ny+1).
The solution to the minimization of (15) that approximates
z ≈ Ds is as follows:

s = (DᵀD)
−1

Dᵀz (17)

For N � (nx + 1)(ny + 1).

B. MLS-based Feature Extraction

Although LSM has an efficient one-step calculation, the
weights of Bj,n are the same all over the variable parameters
(e.g., ρ or x, y). Thus, to approximate complex curves/surfaces,
the fitting order needs to be increased, which may lead to over-
fitting problems. To address this issue, MLS assumes that s
is parameter-dependent, i.e., it changes with respect to ρ (for
centerline and contour), or to (x, y) (for surface). This enables
MLS to represent complex shapes with a lower fitting order.
A support field [36] is introduced to ensure that the value
of each weight is only influenced by data points within the
support field. A conceptual diagram is given in Fig. 3.

1In the following sections, Q is used to generically represent different,
albeit related, functions.

1) Centerline and Contour Extraction: The parametric
equation with σj(ρ) is presented by referring to (6):

f (ρ) =

n∑
j=0

σj(ρ)Bj,n (ρ) (18)

where the parameter-dependent weight is denoted as σj(ρ) ∈
R3. The weighted square residual function is defined as:

Q(ρ) =

N∑
i=1

ω (εi)

∥∥∥∥ n∑
j=0

σj (ρ)Bj,n (ρi)− ci

∥∥∥∥2

(19)

where εi = |ρ− ρi|/d > 0, and d is the constant support field
radius. The scalar function ω(εi) is calculated as follows [37]:

ω (εi) =


2
3 − 4ε2

i + 4ε3
i , εi ≤ 0.5

4
3 − 4εi + 4ε2

i − 4
3ε

3
i , 0.5 < εi ≤ 1

0, εi > 1
(20)

The function ω(εi) indicates the weight of ρ relative to ρi,
ω(εi) decreases as εi increasing inside the support field. When
ρ is outside the support field, ω(εi) = 0. MLS reduces into
LSM when ω(εi) is constant. The cost (19) can be equivalently
expressed in matrix form as:

Q(ρ) = (Bϑ(ρ)− c̄)
ᵀ

W(ε) (Bϑ(ρ)− c̄) (21)

where ϑ(ρ) and W(ε) are defined as follows:

ϑ(ρ) = [σᵀ
0(ρ), . . . ,σᵀ

n(ρ)]ᵀ ∈ R3(n+1) (22)

W(ε) = diag(ω(ε1), . . . , ω(εN ))⊗E3 ∈ R3N×3N

The value of ϑ(ρ) that minimizes (21) is computed as follows:

ϑ(ρ) = (BᵀW(ε)B)−1BᵀW(ε)c̄ (23)

By completing N iterations along the parameter ρ1, ..., ρN , we
can compute the augmented shape features as:

Π = [ϑ(ρ1), . . .ϑ(ρN )] ∈ R3(n+1)×N (24)

As the dimension of (24) is very large, it is impractical to use
its components as a feedback signal for control. Thus, principal
components analysis (PCA) [15] is used to reduce the aug-
mented structure (24) into a compact form Π̃ ∈ R3(n+1)×m

where m � N by selecting the first m most significant
dimensions. The feature vector s ∈ R3m(n+1) is computed
by vectorizing the elements of Π̃.

2) Surface Extraction: The equation of the surface is con-
structed as:

f(x, y) =

nx∑
j=0

ny∑
l=0

Bj,nx (x)Bl,ny (y)$jl(x, y) (25)

where $jl(x, y) ∈ R is the parameter-dependent weight
related to (x, y). Algorithm 1 gives a pseudocode description
of this method.

Remark 1. In addition to the proposed basis functions,
there are other approaches that can be used to obtain similar
results, e.g., Chebyshev polynomials [38] and Legendre basis
transformations [39].
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Algorithm 1 Surface fitting procedure of MLS.
Require: c̄, nx, ny , m, and d;

1: Calculate node distance:

εi =
√

(x− xi)2 + (y − yi)2/d

2: Construct the fitting cost function:

Q = (Dφ (x, y)− z)
ᵀ
W (ε) (Dφ (x, y)− z)

for φ(x, y) and W(ε) satisfying:

φ = [$00, . . . , $nxny ]ᵀ

W = diag (ω (ε1) , . . . , ω (εN )) (26)

3: Compute the structure φ(x, y):

φ = (DᵀW (ε) D)−1DᵀW (ε)z

4: Use xi, yi, i ∈ [1, N ] to compute:

Π = [φ(x1, y1), . . . ,φ(xN , yN )] (27)

5: Use PCA to calculate Π̃;
6: Vectorize Π̃ to obtain s;
7: return s;

IV. SHAPE PREDICTION NETWORK

During the manipulation process, occlusions caused by
obstacles or the robot itself may affect the integrity of observed
shapes, and hence, the vector s cannot properly describe the
object’s configuration. As a solution to this critical issue,
in this paper we propose an occlusion compensation shape
prediction network (SPN), which is composed of a regulation
input (RI), a multi-resolution encoder (MRE) and a discrim-
inator network (DN) [40]. The proposed SPN utilizes the
robot and object configurations and the active robot motions
(i.e., c̄k, rk, uk) as input to the network to predict the next
instance shape, here denoted by ˆ̄ck+1. Fig. 4 shows the overall
architecture of the SPN.

A. Input Data Preprocessing

As the input data c̄k, rk,uk to the network have different
sizes, they need to be rearranged into structures with unified
dimensions. To this end, c̄k is first rearranged into the matrix
Thigh
k = [c1, c2, . . . , cN ]ᵀ ∈ RN×3. Then, farthest point

sampling (FPS) [41] is used to downsample Thigh
k to two

resolutions Tmid
k ∈ RN

δ ×3 and Tlow
k ∈ R

N
δ2
×3, for δ

as the resolution scale. Finally, the vectors rk and uk are
rearranged into the matrices Λhigh

k = IN×1 ⊗ rᵀk ∈ RN×3

and Σhigh
k = IN×1 ⊗ uᵀ

k ∈ RN×3, which are similarly
downsampled into mid and low resolutions as follows:

Λmid
k = IN

δ ×1 ⊗ rᵀk, Λlow
k = I N

δ2
×1 ⊗ rᵀk, (28)

Σmid
k = IN

δ ×1 ⊗ uᵀ
k, Σlow

k = I N
δ2
×1 ⊗ uᵀ

k (29)

Thus, three different resolutions are generated for the network,
high {Thigh

k ,Λhigh
k ,Σhigh

k }, mid {Tmid
k ,Λmid

k ,Σmid
k }, and

low {Tlow
k ,Λlow

k ,Σlow
k }, that provides a total input data of

dimension [N × 9, Nδ × 9, Nδ2 × 9]. Thigh
k ,Tmid

k ,Tlow
k are the

geometric shapes of the object under different compression
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Fig. 4. SPN predicts the next-moment shape c̄k+1 by using the current-
moment data in the case of occlusion, i.e., c̄k + rk + uk −→ ˆ̄ck+1. FPS
[41] regulates c̄k (shown in yellow) uniformly to different scales (shown in
red and blue). MRE stacks three-resolutions data together to form the total
feature information, and obtains the predicted next-moment shape through
convolution. DN is used to further improve the accuracy of the network.

sizes specified by δ. Thus, these three terms can describe
the potential feature structure of objects. The proposed SPN
aims to predict the object’s shape that results from the robots
actions, under the current object-robot configuration. By using
this multi-resolution data {high, mid, low}, the encoder can
better learn the potential feature information of shapes.

B. Multi-Resolution Encoder

A combined multi-layer perceptron (CMLP) is the feature
extractor of MRE, which uses the output of each layer in
a MLP to form a multiple-dimensional feature vector. Tra-
ditional methods adopt the last layer of the MLP output as
features, and do not consider the output of the intermediate
layers, which leads to potentially losing important local infor-
mation [42]. CMLP enables to make good use of low-level and
mid-level features that include useful intermediate-transition
information [40]. CMLP utilizes MLP to encode input data
into multiple dimensions [64, 128, 256, 512, 1024]. Then, we
maxpool the output of the last four layers to construct a
multiple-dimensional feature vector as follows:

v1 ∈ R128, v2 ∈ R256, v3 ∈ R512, v4 ∈ R1024 (30)

The combined feature vector is constructed as: v̄i =
[vᵀ

1 ,v
ᵀ
2 ,v

ᵀ
3 ,v

ᵀ
4 ]ᵀ ∈ R1920. Three independent CMLPs map

three resolutions into three individual v̄i, for i = 1, 2, 3.
Each v̄i represents the extracted potential information of each
resolution. Then, the augmented feature matrix V is generated
by arranging its columns as V = [v̄1, v̄2, v̄3] ∈ R1920×3, and
further through 1D-convolution to obtain M ∈ RN×3. Finally,
the predicted next-moment shape ˆ̄ck+1 ∈ R3N is obtained by
vectorizing M. The prediction loss of MRE is:

Lmre =
∥∥ˆ̄ck+1 − c̄k+1

∥∥ (31)

where c̄k+1 represents the ground-truth next-moment shape in
the training data-set.
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C. Discriminator Network

Generative Adversarial Network (GAN) is chosen as DN
to enhance the prediction accuracy. For simplicity, we de-
fine Φ = MRE() and Ψ = DN(). We define (c̄k, rk,uk)
as the X input into Φ, while Y represents the true shape
c̄k+1. Ψ is a classification network with similar structure as
CMLP, constituted by serial MLP layers [128, 256, 512, 1024]
to distinguish the predicted shape Φ(X ) and the real shape
Y . We maxpool the last three layers of Ψ to obtain feature
vector [256, 512, 1024]. Three feature vectors are concatenated
into a latent vector m ∈ R1792, and then passed through the
fully-connected layers [512, 256, 64, 1] followed by sigmoid-
classifier to obtain the evaluation. The adversarial loss is
defined as follows:

Ladv =
∑

1≤i≤v

log (1−Ψ (βi))+
∑

1≤j≤v

log (Ψ (Φ(αi))) (32)

where αi ∈ X , βi ∈ Y, i = 1, . . . , v, and v is size of the
dataset including X and Y . The total loss of SPN is:

L = ζmreLmre + ζadvLadv (33)

where ζmre and ζadv are the weights of Lmre and Ladv ,
respectively, which satisfy the condition: ζmre + ζadv = 1.

V. RECEDING-TIME MODEL ESTIMATION

In this paper, the objects are assumed to be manipulated
by the robot slowly, thus Jk(sk, rk) is expected to change
smoothly. For ease of presentation, we omit the arguments
of Jk(sk, rk) and denote it as as Jk from now on. To esti-
mate the DJM, three indicators are considered, viz., accuracy,
smoothness, and singularity. To this end, an optimization-
based receding-time model (RTM) estimator is presented to
estimate the changes of the Jacobian matrix, denoted by
∆Ĵk = Ĵk − Ĵk−1, which enables to monitor the estimation
procedure. ∆Ĵk can be obtained by considering the following
three constraints:
• (Q1) Constraint of receding-time error [43]. As Jk depicts

the relationship between ∆sk+1 and uk in a local range,
thus we consider the accumulated error in η past moments
to ensure the estimation accuracy. η is the receding
window size. The receding-time error is given by:

Q1 =

η∑
j=1

γj
∥∥∥∥∆sk+1−j − (Ĵk−1 + ∆Ĵk)uk−j

∥∥∥∥2

(34)

The sensitivity to noise can be improved by adjusting
η, which helps to address the measurement fluctuations.
0 < γ ≤ 1 is a constant forgetting factor giving less
weight to the past observation data.

• (Q2) Constraint of estimation smoothness [43]. As Jk is
assumed to be smooth, thus ∆Ĵk should be estimated
smoothly to avoid sudden large fluctuations, which can
be achieved by minimizing the Frobenius norm of ∆Ĵk:

Q2 = ‖∆Ĵk‖2F (35)

• (Q3) Constraint of shape manipulability [44]. It evaluates
the feasibility of changing the object’s shape under the

current object-robot configuration:

Q3 =

∥∥∥∥λmax((Ĵk−1 + ∆Ĵk)ᵀ(Ĵk−1 + ∆Ĵk))

λmin((Ĵk−1 + ∆Ĵk)ᵀ(Ĵk−1 + ∆Ĵk))

∥∥∥∥2

(36)

where λmax and λmin are the maximum and minimum
eigenvalue, respectively, and Q3 ≥ 1. When Q3 = 1,
the object can deform isotropically in any direction. A
growing Q3 indicates that the object is reaching singular
(non-manipulable) configuration.

Finally, the total weighted optimization index is given by:

Q(∆Ĵk) = µ1Q1 + µ2Q2 + µ3Q3 (37)

where µi > 0 are the weights that specify the contribution of
each constraint, and which satisfy µ1+µ2+µ3 = 1. The index
(37) is then solved by using numerical optimization tools (e.g.,
Matlab/fmincon or Python/CasADi) to obtain ∆Ĵk and thus,
iteratively update the deformation Jacobian matrix as follows:
Ĵk = Ĵk−1 + ∆Ĵk.

VI. MODEL PREDICTIVE CONTROLLER

It is assumed that the matrix Jk has been accurately
estimated at the time instant k by the RTM, such that it
satisfies ∆sk+1 = Ĵkuk. Based on this model, we propose
an MPC-based controller to derive the velocity inputs uk for
the robot, while taking saturation and workspace constraints
into account. Two vectors are defined as follow:

s̄k = [sᵀk+1|k, . . . , s
ᵀ
k+h|k]ᵀ ∈ Rph

ūk = [uᵀ
k|k, . . . ,u

ᵀ
k+h−1|k]ᵀ ∈ R3h (38)

where s̄k and ūk represent the predictions of sk and uk in the
next h periods, respectively. The vectors sk+i|k and uk+i|k
denote the ith predictions of sk and uk from the time instant
k, where sk|k = sk, and uk|k = uk must hold. The prediction
s̄k can be calculated from the estimated Jacobian matrix by
noting that Ĵk ≈ Ĵk+h is satisfied during period [k, k + h]
(which is reasonable, given the regularity of the object). This
way, the predictions are computed as follows:

sk+j|k = sk +
j−1∑
i=0

Ĵkuk+i|k, j = 1, . . . , h (39)

All predictions are then grouped and arranged into a single
vector form:

s̄k = Ask + Θūk,

A = Ih×1 ⊗Ep ∈ Rph×p, Θ = Lh ⊗ Ĵk ∈ Rph×3h (40)

In addition to s̄k and ūk, we define the constant sequence
vector s̄∗k that represents the desired shape feature as:

s̄∗k =
[
s∗ᵀk+1|k, . . . , s

∗ᵀ
k+h|k

]ᵀ
∈ Rph (41)

The cost function Q (ūk) for the optimization of the control
input is formulated as:

Q (ūk) = (s̄k − s̄∗k)
ᵀ
Υ1 (s̄k − s̄∗k) + ūᵀ

kΥ2ūk (42)

where Υ1 > 0 and Υ2 > 0 are the weights for the error
convergence rate and the smoothness of uk, respectively. Two
constraints are considered:
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• Saturation limits. In practice, robots have limits on their
achievable joint speeds. These constraints are useful in
soft object manipulation tasks to avoid damaging the
object. Therefore, ūk needs to be constrained:

ūmin ≤ ūk ≤ ūmax (43)

where ūmin and ūmax are the constant lower and upper
bounds, respectively.

• Workspace limits. Robots are also often required to op-
erate in a confined workspace to avoid colliding with the
environment. In soft object manipulation, this constraint
is needed to avoid over-stretching or over-compressing
the manipulated object. To this end, the following con-
stant bounds are introduced:

rmin
k+i|k ≤ rk+i|k ≤ rmax

k+i|k, 0 ≤ i ≤ h− 1 (44)

Similarly as in (39), the recursive structure of (44) can
be obtained follows:

Ξmin ≤ Cūk ≤ Ξmax (45)

for Ξmin,Ξmax ∈ R3h and C ∈ R3h×3h defined as:

Ξmin = [(rmin
k|k − rk−1)ᵀ, ..., (rmin

k+h−1|k − rk−1)ᵀ]ᵀ

Ξmax = [(rmax
k|k − rk−1)ᵀ, ..., (rmax

k+h−1|k − rk−1)ᵀ]ᵀ

C = Lh ⊗E3 ∈ R3h×3h (46)

The quadratic optimization problem is formulated as follows:

min
ūk

Q(ūk) = 1
2 ūᵀ

kHūk + qᵀūk

s.t.
ūmin ≤ ūk ≤ ūmax

Ξmin ≤ Cūk ≤ Ξmax

(47)

where H = 2 (ΘᵀΥ1Θ + Υ2) ∈ R3h×3h, qᵀ = 2ΩᵀΥ1Θ ∈
R1×3h and Ω = Ask− s̄∗k ∈ Rph are constant matrices. Then,
ūk can be obtained by using a standard quadratic solver on
(47). Finally, uk is calculated by the receding horizon scheme:

uk = [E3,0, . . . ,0]ūk (48)

Fig. 5 presents the conceptual block diagram of the pro-
posed framework.

Remark 2. The proposed MPC-based technique (47) com-
putes the robot’s shaping actions based on a performance
objective and subject to system’s constraints; This approach
does not require the identification of the full analytical model
of the deformable object. Its quadratic optimization form
enables to integrate additional metrics into the problem, e.g.,
rising time and overshoot.

VII. RESULTS

A. Experimental Setup

Vision-based manipulation experiments are conducted to
validate our proposed framework. The experimental platform
used in our study includes a fixed D455 depth sensor, a UR5
robot manipulator, and various deformable objects shown in
Fig. 6. The depth sensor receives the video stream, from
which it computes the 3D shapes by using the OpenCV
and RealSense libraries. In our experiments, only 3 DOF of
the robot manipulator are considered, therefore, the control

input u = [ux, uy, uz]
ᵀ ∈ R3 represents the linear velocity

of the end-effector; A saturation limit of |ui| ≤ 0.01 m/s,
is applied for i = x, y, z. The motion control algorithm
is implemented on ROS/Python, which runs with a servo-
control loop of 10 Hz. A video of the conducted experiments
can be downloaded from https://github.com/JiamingQi-Tom/
experiment video/raw/master/paper4/video.mp4

The proposed shape extraction algorithm is depicted in Fig.
7. The RGB image from the camera is transformed into HSV
and combined with mask processing to obtain a binary image.
OpenCV/thinning is utilized with FPS to extract a fixed
number of object points. The point on the centerline closest
to the gripper’s green marker is chosen to sort the centerline
along the cable. Then we obtain the 3D shapes by using the
RealSense sensor and checking its 2D pixels. We adopt the
method in [11] to compute the object’s contour. A surface is
obtained in the similar way to the centerline, i.e., by sorting
points from top to bottom, and from left to right. As 2D pixels
and 3D points have a one-to-one correspondence in a depth
camera, thus, our extraction method improves the robustness to
measurement noise and is simpler than traditional point cloud
processing algorithms.

TABLE I
FITTING CONFIGURATIONS. “N/A” STANDS FOR “NOT APPLICABLE”.

Centerline Contour Surface / Rigid
Method LSM MLS MLS

Support Radius N/A d = 0.2 d = 0.2

PCA N/A m = 1 m = 1

Fitting order n = 5 n = 4 nx = ny = 2

Basis-Function Bernstein Trigonometric Polynominal
Numbers N = 64 N = 64 N = 32

B. Online Fitting of the Parametric Shape Representation

In this section, ten thousand samples of centerlines, contours
and surfaces with N = 64, 64, 32, respectively, are collected
by commanding the robot to manipulate the objects, whose
configuration is then captured by a depth sensor. Such shaping
actions are shown in Fig. 8, and visualized in the accompany-
ing multimedia attachment. This data is used to evaluate the
performance (viz. its accuracy and computation time) of our
representation framework. For that, we calculate the average
error between the feedback shape c̄ and the reconstructed
shape ˆ̄c as follows mean(

∑∥∥c̄i − ˆ̄ci
∥∥). The computation time

is defined as the average of the overall processing time of all
sample data among each method.

Fig. 9 shows that the larger the scalars n, nx, ny are, the
better the fitting accuracy of LSM and MLS is. MLS fits better
than LSM under the same condition, as MLS calculates the
independent weight while LSM assumes that each node has
the same weight. MLS works better in fitting contour because
the parametric curve may not be continuous in the end corner,
thus, the equal weight assumption of LSM is not suitable here.
As the number of data points for surface is N = 32, it does
not satisfy the condition N � (nx + 1)(ny + 1) for higher
order fitting models (e.g., nx = ny ≥ 5), thus, we only use
nx = ny ≤ 4. The results show that MLS performs better
than LSM in the surface representation; Interestingly, MLS

https://github.com/JiamingQi-Tom/experiment_video/raw/master/paper4/video.mp4
https://github.com/JiamingQi-Tom/experiment_video/raw/master/paper4/video.mp4
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Fig. 5. The block diagram of the proposed shape servoing framework, including representation, prediction, approximation, and manipulation within constraints.
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Fig. 6. The experimental setup, including the objects (elastic and rigid),
single-arm robot (UR5), and D455.

(a) Centerline

X

Y

Z X

Y

Z

X

Y

Z

(b) Contour (c) Surface

Marker Marker Marker

Fig. 7. Shape extraction for centerline, contour and surface. The first row
shows the 2-D image pixels, and the second row shows the 3D shapes. All
shapes are fixed-sampled, equidistant, and ordered sorting.

obtains satisfactory performance even with nx = ny = 1.
Fig. 9 also shows that larger n, nx, ny will also increase the
computation time. MLS has a more noticeable increase, as it
calculates the weights of all nodes while LSM calculates them
once. The trigonometric approach is the fastest, polynomial
and Bernstein follow, while Cox-deBoor is the slowest with
the most iterative operations. The above analysis verifies the
effectiveness of the proposed extraction framework, which can
represent objects with a low-dimensional feature. Details of the
curve fitting configuration is given in Table. I.

C. Occlusion-Robust Prediction of Object Shapes
The data collected in Section VII-B is used to evaluate

our proposed SPN. 80% of the data is used as the training
set, and the remaining 20% of the data is used to test the
trained network. We set δ = 2 for the centerline, contour,
and surface parametrization. SPN is built using PyTorch and
trained by an ADAM optimizer with a batch size of 500,
and the initial learning rate set to 0.0001. RELU activation
and batch normalization are adopted to improve the network’s

X

Y
Z

(a) Centerline (b) Contour (c) Surface

Fig. 8. Shapes of various objects manipulated by UR5.

performance. In this validation test, the robot deforms the
objects with small babbling motions while a cardboard sheet
covers parts of objects. Fig. 10 shows that SPN can predict
and provide relatively complete shapes for the three types of
manipulated objects. The accompanying video demonstrates
the performance of this method.

D. Estimation of the Sensorimotor Model
This section aims to evaluate RTM (37) that approximates

the deformation Jacobian matrix; The performance of the RTM
estimator is compared with the interaction matrix estimator
(IEM) in [15], and the unscented Kalman filter (UKF) in [31].
To this end, we introduce two metrics, i.e., T1 and T2, to
quantitatively compare performances of these algorithms:

T1 = ‖ŝk+1 − sk+1‖, T2 = ‖∆sk+1 − Ĵkuk‖ (49)

where ŝk+1 = ŝk + Ĵkuk is the approximated shape fea-
ture that is computed based on the control actions. Fig. 11
shows that RTM with η = 20 provides the best performance
for T1 among the methods; This means that constraint Q1

(34) enables RTM to learn from past data by adjusting η.
Small values of T2 reflect that RTM accurately predicts the
differential changes induced by the DJM; This means that
constraint Q2 (35) helps to compute a smooth matrix Ĵk.
As the proposed method incorporates the constraint Q3 (36),
thus, RTM can prevent singularities in the estimation of the
Jacobian matrix, while IEM and UKF are prone to reach ill-
conditioned estimations. We use RTM with η = 10 in the
following sections.

E. Automatic Shape Servoing Control
This section conducts four automatic manipulation experi-

ments, labeled as Exp1, Exp2, Exp3, and Exp4, respectively.
The target contour c̄∗ is obtained from previous demonstra-
tions of the manipulation task, which ensures its reachability.
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(a) Centerline fitting

(b) Contour fitting

(c) Surface fitting
Fig. 9. Comparison of centerline, contour and surface fitting in accuracy and
time-consuming among (7)(8)(9)(10) between LSM and MLS with d = 0.9,
d = 0.1, and d = 0.2, respectively. ni, i = x, y are the surface fitting order.

A cardboard sheet is manually placed over the object to pro-
duce (partial) occlusions and test the robustness of our algo-
rithm. The estimation methods in [15] and [31] are compared
with the proposed receding-time model with MPC (h = 5 and
h = 15). We label these methods as CM1, . . . ,CM4, and each
method has been optimized to achieve a balance of stability,
convergence, and responsiveness.

In addition to the feedback shape error ‖s∗ − sk‖, we also
compare Tmax (i.e., the number of steps from start to finish), td
(the steps from ‖s∗ − s0‖ to 10% of this value), ts (the steps
from 10% ‖s∗ − s0‖ to the threshold value), and deff (the
total moving distance of the end-effector), [11], [23]. Fig. 12
shows the shaping motions of the manipulated objects toward
the desired configuration (black curve), with the cardboard
blocking the view at various instances. The results demonstrate
that SPN can predict the object’s shape during occlusions
and feed it back to the controller to enforce the shape servo-
loop; This results in the objects being gradually manipulated
towards the desired configuration. The error norm ‖s∗ − sk‖
plots in Fig. 13 shows that CM3 provides the best control
performance for the error minimization, with CM4 as the
second-best, and CM1 and CM2 showing similar performance.

(a) Centerline

(b) Contour

(c) Surface
Fig. 10. Validation of SPN among three shape configurations with moving
the obstacle manually. The RGB image describes the occluded case. Red dot
in the second row gives the feedback shape within the occlusion at the current
instant, and blue ones are the predicted shape according to the past data.

A higher h is helpful for feature prediction, yet, since we
assume that Ĵk is constant in the window period h, it may
lead to inaccurate predictions and even wrong manipulation
of objects. Therefore, h should be chosen according to the
performance requirements of the system.

From the Q3 plots in Fig. 13, we can see RTM with
η = 10 provides the smallest value, which validates that RTM
can enhance the manipulation feasibility and avoid shapes
falling into the singular configurations. The black dashed lines
represent the workspace constraints of rx, ry, rz , on which
we can see the end-effector’s trajectories in the Cartesian
coordinate system; The results show that CM3 and CM4

remain within the workspace, while CM1 and CM2 may
violate this constraint. Due to the adopted input saturation in
our platform, all four methods can satisfy the control saturation
constraint. Exp4 shows that our method has good universality,
not only for the shape control, but also for traditional rigid
object positioning.

A performance comparison of these experiments is given
in Fig. 14. The results illustrate that our proposed shape
servoing framework achieves the best performance relative to
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Fig. 11. Curves of T1, T2, and Q3, reviewing the accuracy, smoothness, and
singularity of DJM, respectively. T1 represents the feature estimation error,
and T2 depicts the estimation differential error. Besides, µ1 = 0.8, µ2 =
0.1, µ3 = 0.1.

the manipulation speed Tmax, response speed td, convergence
speed ts, and motion distance deff .

VIII. CONCLUSIONS

In this paper, we present an occlusion-robust shape servoing
framework to control shapes of elastic objects into target
configurations, while considering workspace and saturation
constraints. A low-dimensional feature extractor is proposed to
represent 3D shapes based on LSM and MLS. A deep neural
network is introduced to predict the object’s configuration sub-
ject to occlusions, and feed it to the shape servo-controller. A
receding-time model estimator is designed to approximate the
deformation Jacobian matrix with various constraints such as
accuracy, smoothness, singularity. The conducted experiments
validate the proposed methodology with multiple unstructured
shape servoing tasks in visually occluded situations and with
unknown deformation models.

However, there are some limitations in our framework. For
example, as the support field radius d is constant (i.e., it does
not adjust with dynamic shapes), the computed representation

lacks flexibility. Also, the SPN needs to obtain substantial
offline training data to properly work, which might pose com-
plications in practice. Note that our method may not accurately
shape objects with negligible elastic properties (e.g., fabrics,
food materials, etc). Future work include the incorporation of
shape reachability detection into the framework in order to
determine the feasibility of a given shaping task beforehand.
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(a) Exp1 / Centerline (b) Exp2 / Contour

(c) Exp3 / Surface (d) Exp4 / Rigid Plane
Fig. 12. Shape manipulation experiments, Exp1, Exp2, and Exp3 are for the deformation tasks, and Exp4 is the positioning task. The first row shows 2D
image manipulation process (from left to right are initial, intermediate, intermediate, and desired shape), and the second row represents 3D shape manipulation
process. The obstacle moves randomly during the process. The target shape is shown with black, the red represents the start shapes, and the gradient color
are intermediate shapes.

(a) Exp1 / Centerline (b) Exp2 / Contour

(c) Exp3 / Surface (d) Exp4 / Rigid Plane
Fig. 13. Profiles of the manipulation error ‖s∗−sk‖, the robot pose rk , the velocity command uk , and the manipulability index Q3 among four experiments
(Exp1, . . . , Exp4). Each experiment adopts four methods, i.e., CM1, . . . ,CM4.
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